

FASE 4: CONSOLIDAÇÃO DO EVTEA-J RELATÓRIO FINAL

Volume 3 – Memória Justificativa

Tomo VII – Estudos de Engenharia – Estudos Geológicos-Geotécnicos

EVTEA-J

ESTUDO DE VIABILIDADE TÉCNICO-OPERACIONAL, ECONÔMICO-FINANCEIRA, AMBIENTAL E JURÍDICO DA NOVA FERROESTE

TRECHO: Paranaguá (PR) – Maracaju (MS) RAMAL: Cascavel (PR) – Foz do Iguaçu (PR)

LISTA DE ABREVIATURAS E SIGLAS

ANTT AGÊNCIA NACIONAL DE TRANSPORTES TERRESTRES

AASHTO AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION

OFFICIALS

CBR CALIFORNIA BEARING RATIO

CPRM COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

CE CAMINHAMENTO ELÉTRICO

DER/PR DEPARTAMENTO DE ESTRADAS DE RODAGEM DO PARANÁ

DNPM DEPARTAMENTO NACIONAL DE PRODUÇÃO MINERAL

EVTEA-J ESTUDO DE VIABILIDADE TÉCNICO-OPERACIONAL, ECONÔMICO-

FINANCEIRA, AMBIENTAL E JURÍDICO

HRB HIGHWAY RESEARCH BOARD

IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA

IG ÍNDICE DE GRUPO

IP ÍNDICE DE PLASTICIDADE

LIMITE DE LIQUIDEZ

LP LIMITE DE PLASTICIDADE

MINEROPAR SERVIÇO GEOLÓGICO DO PARANÁ

MS ESTADO DO MATO GROSSO DO SUL

NA NÍVEL D'ÁGUA

NBR NORMA TÉCNICA BRASILEIRA

NSPT ÍNDICE DE RESISTÊNCIA À PENETRAÇÃO DO SOLO

OAE OBRA DE ARTE ESPECIAL

PR ESTADO DO PARANÁ

SM SONDAGEM MISTA

SP SONDAGEM A PERCUSSÃO

ST SONDAGEM A TRADO

LISTA DE TABELAS

Tabela 1 – Principais formações encontradas ao longo do traçado	17
Tabela 2 – Correlação entre os subtrechos e os segmentos homogêneos	38
Tabela 3 – Quilometragem real dos Subtrechos.	
Tabela 4 – Quilometragem real dos segmentos homogêneos	40
Tabela 5 – Resumo de quantidades e comprimentos de sondagens e ensaios realizados no estudo	41
Tabela 6 – Resumo de sondagens e ensaios do SH-1, 2 e 3.	
Tabela 7 – Resumo de sondagens e ensaios do SH-1, 2 e 3 (continuação)	42
Tabela 8 – Resumo de sondagens e ensaios do SH-4.	
Tabela 9 – Resumo de sondagens e ensaios do SH-5.	44
Tabela 10 – Resumo de sondagens e ensaios do SH-5, 6 e 7.	44
Tabela 11 – Resumo de sondagens e ensaios do SH-5, 6 e 7 (continuação)	45
Tabela 12 – Resumo de sondagens e ensaios do SH-8.	
Tabela 13 – Resumo de sondagens e ensaios do SH-9 e 10.	46
Tabela 14 – Resumo de sondagens e ensaios do SH-11	
Tabela 15 – Dados das sondagens executadas no SH-1	
Tabela 16 – Dados das sondagens executadas no SH-2	
Tabela 17 – Dados das sondagens executadas no SH-3	
Tabela 18 – Dados das sondagens executadas no SH-4	
Tabela 19 – Dados das sondagens executadas no SH-5	
Tabela 20 – Dados das sondagens executadas no SH-6	
Tabela 21 – Dados das sondagens executadas no SH-7	
Tabela 22 – Dados das sondagens executadas no SH-8	
Tabela 23 – Dados das sondagens executadas no SH-9	
Tabela 24 – Dados das sondagens executadas no SH-10	
Tabela 25 – Dados das sondagens executadas no SH-11	
Tabela 26 – Dados dos ensaios executados no SH-2	
Tabela 27 – Dados dos ensaios executados no SH-3	
Tabela 28 – Dados dos ensaios executados no SH-4.	
Tabela 29 – Dados dos ensaios executados no SH-5.	
Tabela 30 – Dados dos ensaios executados no SH-6.	
Tabela 31 – Dados dos ensaios executados no SH-7	
Tabela 32 – Dados dos ensaios executados no SH-8	
Tabela 33 – Dados dos ensaios executados no SH-9	
Tabela 34 – Dados dos ensaios executados no SH-10	
Tabela 35 – Dados dos ensaios executados no SH-11	
Tabela 36 – Coordenadas inicial e final das seções levantadas na Área 1	
Tabela 37 – Coordenadas inicial e final das seções levantadas na Área 2	
Tabela 38 – Coordenadas inicial e final das seções levantadas na Área 3	
Tabela 39 – Coordenadas inicial e final das seções levantadas na Área 4	
Tabela 40 – Coordenadas inicial e final das seções levantadas na Área 5	
Tabela 41 – Coordenadas inicial e final das seções levantadas na Área 6	
Tabela 42 – Coordenadas inicial e final das seções levantadas na Área 7	
Tabela 43 – Coordenadas inicial e final das seções levantadas na Área 8	
Tabela 44 – Coordenadas inicial e final das seções levantadas na Área 9	
Tabela 45 – Nível de segurança desejado contra perdas de vidas humanas.	
Tabela 46 – Nível de segurança desejado contra danos materiais e ambientais	
Tabela 47 – Fatores de segurança mínimos para deslizamentos	248

Tabela 48 – Sondagens de referência e altura de taludes para corte e aterro	249
Tabela 49 – Valores atribuídos para a escala de suscetibilidade a processos erosivos	276
Tabela 50 – Informações utilizados para elaboração do mapa de suscetibilidade a processos erosivos	277
Tabela 51 – Escala e nota atribuída para cada condição geotécnica definida	278
Tabela 52 – Escala atribuída para o item de nível do lençol freático	278
Tabela 53 – Escala atribuída para o item de espessura de solo mole	279
Tabela 54 – Escala atribuída para o item de profundidade do topo rochoso	279
Tabela 55 – Escala atribuída para a classificação de material de escavação	280
Tabela 56 – Escala atribuída para o índice de grupo.	281
Tabela 57 – Escala atribuída para o CBR.	281
Tabela 58 – Zoneamento geotécnico obtido através das notas das escalas dos tens adotados	282

LISTA DE FIGURAS

Figura 1 – Mapa de Situação	14
Figura 2 — Exemplos de quantidade e tipo de sondagem a ser executado em função da altura e extensão do	
corte	27
Figura 3 — Distribuição das sondagens conforme homogeneização geológica, geomorfológica e pedológica.	
Trechos entre Maracaju/MS e Guarapuava/PR	31
Figura 4 — Distribuição das sondagens conforme homogeneização geológica, geomorfológica e pedológica.	
Trechos entre Guarapuava/PR e Paranaguá/PR e Ramal Cascavel – Foz do Iguaçu/PR	
Figura 5 – Exemplo de sondagem em corte	
Figura 6 – Exemplo de sondagem em locais de aterro	
Figura 7 – Exemplo de sondagem para análise do subleito	
Figura 8 — Exemplo de sondagem para fundação de OAEs e solos moles	
Figura 9 – Exemplo de sondagem em emboques de túnel	
Figura 10 — Correlação entre os subtrechos e os segmentos homogêneos	39
Figura 11 — Local de execução da SP-910 e amostra de solo obtida	
Figura 12 — Local de execução da SP-911 e amostra de solo obtida	49
Figura 13 — Local de execução da SM-904 e amostras de solo obtidas	51
Figura 14 — Local de execução da SP-909 e amostras de solo obtidas	52
Figura 15 — Local de execução da SM-903 e amostras de solo obtidas	53
Figura 16 – Local de execução da SP-908 e amostra de solo obtida	54
Figura 17 – Local de execução da SP-906 e amostras de solo obtidas	55
Figura 18 – Local de execução da SP-905 e amostras de solo obtidas	57
Figura 19 — Local de execução da SP-904 e amostras de solo obtidas	58
Figura 20 — Local de execução da SP-903 e amostra de solo obtida	59
Figura 21 – Local de execução da SP-902 e amostras de solo obtidas	60
Figura 22 – Local de execução da SM-902 e amostras de solo obtidas	
Figura 23 — Local de execução da SP-901 e amostra de solo obtida	62
Figura 24 — Local de execução da SM-901 e amostras de solo obtidas	
Figura 25 — Local de execução da SP-900 e amostras de solo obtidas	
Figura 26 — Local de execução da SM-900 e amostra de solo obtida	
Figura 27 — Local de execução da SP-800 e amostra de solo obtida	
Figura 28 — Caixa testemunho da SM-800	
Figura 29 — Caixa testemunho da SM-801	
Figura 30 — Local de execução da SP-700 e amostra de solo obtida	
Figura 31 – Caixa testemunho da SM-701	
Figura 32 – Caixa testemunho da SM-703	
Figura 33 – Local de execução da SP-602 com rocha aparente	
Figura 34 – Local de execução da SP-601 com rocha aparente	
Figura 35 — Local de execução da SP-600 e amostra de solo obtida	
Figura 36 — Caixa testemunho da SM-601.	
Figura 37 — Caixa testemunho da SM-600.	
Figura 38 — Local de execução da SP-502 e amostra de solo obtida	
Figura 39 — Local de execução da SP-501 e amostra de solo obtida	
Figura 40 — Local de execução da SP-500 e amostra de solo obtida	
Figura 41 — Local de execução da SP-402 e amostra de solo obtida	
Figura 42 — Local de execução da SP-401 e amostra de solo obtida	
Figura 43 — Local de execução da SP-401 e amostra de solo obtida	
Figura 44 – Local de execução da SP-408 e amostra de solo obtida	
1 iyuru 44 — Locai de execuçuo da 37-400 e airiostra de 5010 oblida	03

Figura 45 – Caixa testemunho da SM-407.	
Figura 46 – Caixa testemunho da SM-409.	
Figura 47 – Caixa testemunho da SM-411.	88
Figura 48 – Caixa testemunho da SM-412.	89
Figura 49 – Caixa testemunho da SM-414.	90
Figura 50 – Local de execução da SP-303 e amostra de solo obtida	92
Figura 51 – Local de execução da SP-302 e amostra de solo obtida	93
Figura 52 – Local de execução da SP-301 e amostra de solo obtida	94
Figura 53 – Local de execução da SP-300 e amostra de solo obtida	95
Figura 54 – Caixa testemunho da SM-400	96
- Figura 55 – Caixa testemunho da SM-300	97
- Figura 56 – Caixa testemunho da SM-302	98
Figura 57 – Caixa testemunho da SM-303	
Figura 58 – Local de execução da SP-206 e amostra de solo obtida	
Figura 59 – Local de execução da SP-205 e amostra de solo obtida	
Figura 60 – Local de execução da SP-204 e amostras de solo obtidas	
Figura 61 — Local de execução da SP-203 e amostras de solo obtidas	
Figura 62 — Local de execução da SP-202 e amostra de solo obtida	
Figura 63 – Local de execução da SP-201 e amostra de solo obtida	
Figura 64 – Local de execução da SP-200 e amostra de solo obtida	
Figura 65 – Caixa testemunho da SM-200	
Figura 66 – Local de execução da SP-103 e amostra de solo obtida	
Figura 67 – Caixa de testemunhos da SM-117.	
Figura 68 – Caixa de testemunhos da SM-118	
Figura 69 – Caixa testemunhos da SM-119	
Figura 70 – Caixa testemunhos da SM-120	
Figura 71 – Caixa testemunho da SM-121.	
Figura 72 – Local de execução da SP-101 e amostra de solo obtida	
Figura 73 – Local de execução da SP-101 e amostra de solo obtida	
Figura 74 – Caixa de testemunhos da SM-100.	
Figura 75 – Caixa de testemunhos da SM-100	
Figura 76 – Caixa de testemunhos da SM-102	
-	
Figura 77 – Local de execução da SP-1001 e amostras de solo obtidas	
Figura 78 – Local de execução da SP-1001 e amostras de solo obtidas	
Figura 79 – Local de execução da SP-1002 e amostras de solo obtidas	
Figura 80 – Caixa testemunho da SM-1000.	
Figura 81 – Local de execução da SM-1001 e amostras de solo obtidas	
Figura 82 – Caixa testemunho da SM-1002.	
Figura 83 – Caixa testemunho da SM-1003.	
Figura 84 – Caixa testemunho da SM-1004.	
Figura 85 – Caixa testemunho da SM-1005.	
Figura 86 – Caixa testemunho da SM-1006.	
Figura 87 — Local de execução da SP-1100 e amostras de solo obtidas	
Figura 88 – Caixa testemunho da SM-1100.	
Figura 89 — Local de execução da SP-1101 e amostras de solo obtidas	
Figura 90 – Local de execução da SP-1102 e amostras de solo obtidas	
Figura 91 – Local de execução da SM-1101 e amostras de solo obtidas	139
Figura 92 – Classificação HRB - AASHTO.	140

Figura 93 – Variação de resistividades elétricas das rochas (mod. Orellana, 1982)	147
Figura 94 – Fluxo de corrente elétrica em materiais de resistividades diferentes	148
Figura 95 – Fluxo de corrente elétrica em materiais de resistividades diferentes	149
Figura 96 – Fluxo de corrente elétrica em materiais de resistividades diferentes	149
Figura 97 – Exemplo da Seção de Eletrorresistividade obtida por caminhamento elétrico	150
Figura 98 – Sistema de Resistividade OhmMapper	150
Figura 99 – Especificações Técnicas do Sistema de Eletrorresistividade empregado	151
Figura 100 – Conversão de medidas do arranjo dipolo-dipolo em seção elétrica	153
Figura 101 – Exemplo de escala cromática de valores de resistividade elétrica	155
Figura 102 – Diagrama dos resultados obtidos através das faixas de variações de resistividade elétrica	155
Figura 103 – Localização das seções de eletrorresistividade executadas na Área 1	156
Figura 104 – Seções de caminhamento elétrico e modelos geoelétricos - Área 1	
Figura 105 – Localização das seções de eletrorresistividade executadas na Área 2	166
Figura 106 – Seções de caminhamento elétrico e modelos geoelétricos - Área 2	
Figura 107 – Localização das seções de eletrorresistividade executadas na Área 3	
Figura 108 – Seções de caminhamento elétrico e modelos geoelétricos – Área 3	
Figura 109 – Localização das seções de eletrorresistividade executadas na Área 4	
Figura 110 – Seções de caminhamento elétrico e modelos geoelétricos – Área 4	
Figura 111 – Localização das seções de eletrorresistividade executadas na Área 5	195
Figura 112 – Seções de caminhamento elétrico e modelos geoelétricos – Área 5	
Figura 113 — Possíveis zonas de intrusão de rochas básicas	
Figura 114 — Localização das seções de eletrorresistividade executadas na Área 6	205
Figura 115 – Seções de caminhamento elétrico e modelos geoelétricos – Área 6	
Figura 116 — Localização das seções de eletrorresistividade executadas na Área7	
Figura 117 – Seções de caminhamento elétrico e modelos geoelétricos – Área 7	
Figura 118 – Localização das seções de eletrorresistividade executadas na Área 8	
Figura 119 – Seções de caminhamento elétrico e modelos geoelétricos – Área 8	
Figura 120 – Localização das seções de eletrorresistividade executadas na Área 9	
Figura 121 – Seções de caminhamento elétrico e modelos geoelétricos – Área 9	
Figura 122 – Análise estabilidade taludes de aterro Subtrecho 1.6 – FS = 1,265	
Figura 123 – Análise estabilidade taludes de aterro Subtrecho 1.5 – FS = 1,319	
Figura 124 – Análise estabilidade taludes de aterro Subtrecho 1.4.2 – FS = 1,356	
Figura 125 — Análise estabilidade taludes de aterro Subtrecho 1.4.1 — FS = 1,315	
Figura 126 – Análise estabilidade taludes de aterro Subtrecho 1.3.2 – FS = 1,351	255
Figura 127 – Análise estabilidade taludes de aterro Subtrecho 1.3.1 – FS = 1,410	
Figura 128 — Análise estabilidade taludes de aterro Subtrecho 1.2 — FS = 1,355	
Figura 129 — Análise estabilidade taludes de aterro Subtrecho 1.1.1 — FS = 1,541	
Figura 130 – Análise estabilidade taludes de aterro Subtrecho 1.0.2 – FS = 1,301	
Figura 131 – Análise estabilidade taludes de aterro Subtrecho 1.0.1 – FS = 1,317	
Figura 132 – Análise estabilidade taludes de aterro Subtrecho Ramal – FS = 1,355	
Figura 133 – Análise estabilidade taludes de corte Subtrecho 1.6 – FS = 1,608	
Figura 134 – Análise estabilidade taludes de corte Subtrecho 1.5 – FS = 1,560	
Figura 135 – Análise estabilidade taludes de corte Subtrecho 1.4.2 – FS = 1,500	
Figura 136 – Análise estabilidade taludes de corte Subtrecho 1.4.1 – FS = 1,455	
Figura 137 – Análise estabilidade taludes de corte Subtrecho 1.3.2 – FS = 1,949	
Figura 138 – Análise estabilidade talude de aterro Subtrecho 1.3.1 – FS = 2,071	
Figura 139 – Análise estabilidade talude de aterro Subtrecho 1.2 – FS = 1,506	
Figura 140 – Análise estabilidade talude de aterro Subtrecho 1.1.1 – FS = 1,790	
	

Figura 141 – Análise estabilidade talude de aterro Subtrecho 1.0.2 – FS = 1,358	. 272
Figura 142 – Análise estabilidade talude de aterro Subtrecho 1.0.1 – FS = 1,402	. 273
Figura 1/12 — Análica estabilidade talude de aterro Subtrecho Pamal — ES = 1 / 21	27/

SUMÁRIO

1	APR	APRESENTAÇÃO1					
2	OBJE	OBJETIVO					
3	MAF	A DE SITUAÇÃO	14				
4	GEO	LOGIA	16				
		MORFOLOGIA					
5							
6	PED	DLOGIA	21				
	6.1	LATOSSOLOS	21				
	6.2	Argissolos	21				
	6.3	CAMBISSOLOS	22				
	6.4	NEOSSOLOS	23				
	6.5	NITOSSOLOS	23				
	6.6	Organossolos	23				
	6.7	ESPODOSSOLOS	24				
	6.8	RECURSOS MINERAIS	24				
7	GEO	TECNIA	26				
	7.1	Campanha de Sondagens	26				
	7.2	DEFINIÇÃO DA QUANTIDADE, ESPAÇAMENTO E PROFUNDIDADE DAS SONDAGENS					
	7.3	CRITÉRIOS ADOTADOS					
	7.3.1	Critério geral	29				
	7.3.2	5					
	7.3.3	,					
	7.4	ENSAIOS DE CARACTERIZAÇÃO					
	7.5	SEGMENTAÇÃO DO TRAÇADO GEOMÉTRICO					
8	RESU	JLTADOS DAS SONDAGENS	41				
	8.1	SEGMENTO HOMOGÊNEO 1 – MARACAJU - DOURADOS, MS	48				
	8.2	SEGMENTO HOMOGÊNEO 2 – DOURADOS MS – GUAÍRA, PR					
	8.3	SEGMENTO HOMOGÊNEO 3 – GUAÍRA – IBEMA, PR					
	8.4	SEGMENTO HOMOGÊNEO 4 – IBEMA – GOIOXIM, PR					
	8.5	SEGMENTO HOMOGÊNEO 5 – GOIOXIM – GUARAPUAVA, PR					
	8.6	SEGMENTO HOMOGÊNEO 6 – GUARAPUAVA – PRUDENTÓPOLIS, PR					
	8.7	SEGMENTO HOMOGÊNEO 7 – PRUDENTÓPOLIS – LAPA (ENG. BLEY), PR					
	8.8	SEGMENTO HOMOGÊNEO 8 – LAPA (ENG. BLEY) – S. JOSÉ DOS PINHAIS, PR					
	8.9	SEGMENTO HOMOGÊNEO 9 – S. JOSÉ DOS PINHAIS – MORRETES, PR					
	8.10	SEGMENTO HOMOGÊNEO 10 – MORRETES – PARANAGUÁ, PR					
	8.11	SEGMENTO HOMOGÊNEO 11 — RAMAL CASCAVEL — FOZ DO IGUAÇU, PR					
9		JLTADOS DOS ENSAIOS					
	9.1	Classificação HRB – A-2-4					
	9.1	CLASSIFICAÇÃO HRB – A-2, A-5, A-6 E A-7					
		JLTADOS DOS ENSAIOS SÍSMICOS – ELETRORRESISTIVIDADE					

10.1 MÉTODO DE ELETRORRESISTIVIDADE					
10.2 EQUIPAMENTO DE CAMINHAMENTO ELÉTRICO					
10.3 LEVANTAMENTO DE CAMPO					
10.4 PROCESSAMENTO DE DADOS					
10.5 RESULTADOS					
10.5.1 Área 1					
10.5.2 Área 2					
10.5					
10.5					
10.5					
10.5					
10.5					
10.5					
10.5	5.9 Área 9	238			
11 ANA	ÁLISE DE ESTABILIDADE DE TALUDES	248			
11.1	ESTABILIDADE DOS TALUDES DE ATERRO	250			
11.2	ESTABILIDADE DOS TALUDES DE CORTE	263			
12 SUS	CETIBILIDADE A PROCESSOS EROSIVOS	276			
13 ZON	IEAMENTO GEOTÉCNICO	270			
	ERÊNCIAS				
APÊNDIC	E A – MAPA GEOLÓGICO	285			
APÊNDIC	APÊNDICE B – MAPA GEOMORFOLÓGICO286				
APÊNDIC	E C – MAPA PEDOLÓGICO	287			
APÊNDIC	E D – MAPA DOS MUNICÍPIOS COM RECURSOS NATURAIS	288			
APÊNDIC	E E – SUBTRECHO 1.0.1 – SONDAGENS SÉRIE 900 - FUSO 21S	289			
APÊNDIC	E F – SUBTRECHO 1.0.2 – SONDAGENS SÉRIE 900 - FUSO 22S	291			
APÊNDIC	E G – SUBTRECHO 1.1.1 – SONDAGENS SÉRIE 800 E SUBTRECHO 1.2 – SONDAGENS SÉRIE 700 - FU	so			
225		292			
APÊNDIC	E H – SUBTRECHO 1.3.1 – SONDAGENS SÉRIE 600 - FUSO 22S	293			
APÊNDIC	E I – SUBTRECHO 1.3.2 – SONDAGENS SÉRIE 500 - FUSO 22S	294			
APÊNDIC	E J – SUBTRECHO 1.4.1 – SONDAGENS SÉRIE 400 - FUSO 22S	295			
ÁREAS [ÁREAS DE GEOFÍSICA				
APÊNDICE K – SUBTRECHO 1.4.2 – SONDAGENS SÉRIE 300 - FUSO 22S					
APÊNDICE L – SUBTRECHO 1.5 – SONDAGENS SÉRIE 200 - FUSO 22S					
APÊNDICE M – SUBTRECHO 1.6 – SONDAGENS SÉRIE 100 - FUSO 22S					
ÁREAS [ÁREAS DE GEOFÍSICA 300				
APÊNDIC	APÊNDICE N – SUBTRECHO 1.7 (1,09 KM) – SONDAGENS SÉRIE 00 - FUSO 22S				
APÊNDIC	E O – RAMAL CASCAVEL – FOZ DO IGUAÇU – SONDAGENS SÉRIE 1000 - FUSO 22S	302			
APÊNDIC	E P – RAMAL CASCAVEL – FOZ DO IGUAÇU – SONDAGENS SÉRIE 1100 - FUSO 21S	303			

APÊNDICE Q – BOLETINS DE SONDAGENS E ENSAIOS	304
APÊNDICE R – MAPA DE SUSCETIBILIDADE A PROCESSOS EROSIVOS	305
APÊNDICE S – PERFIL GEOLÓGICO	306
APÊNDICE T – ZONEAMENTO GEOTÉCNICO	307

1 APRESENTAÇÃO

O Consórcio formado pelas empresas TPF GETINSA EUROESTUDIOS, TPF ENGENHARIA LTDA e SENER SETEPLA TECNOMETAL ENGENHARIA E SISTEMAS S.A., também intitulado de Consórcio TPF-SENER, este vencedor do processo licitatório de Concorrência Nº 040/2019 DER/DT - SDP Nº 018/2019 DER/DT para contratação de empresa de consultoria para Elaboração de Estudo de Viabilidade Técnico-Operacional, Econômico-Financeira, Ambiental e Jurídico para implantação e/ou readequação de ferrovia no trecho compreendido entre Maracaju (MS) – Guaíra (PR), Cascavel (PR), Guarapuava (PR) e Paranaguá (PR), e do Ramal Cascavel – Foz do Iguaçu, numa extensão aproximada de 1.370 km, vem apresentar o Tomo VII – Estudos de Engenharia – Estudos Geológicos-Geotécnicos do Volume 3 – Memória Justificativa referente à FASE 04 dos estudos de viabilidade.

A apresentação do referido estudo é composta dos seguintes volumes, conforme a relação a seguir:

- Volume 1 Relatório do Estudo
- Volume 2 Desenhos de Engenharia
- Volume 3 Memória Justificativa
 - o Tomo I Estudos de Demanda
 - o Tomo II Identificação e Seleção das Alternativas de Traçado
 - o Tomo III Estudos Ambientais
 - o Tomo IV Estudos de Engenharia
 - Tomo V Estudos de Engenharia Estudos Topográficos
 - o Tomo VI Estudos de Engenharia Estudos Hidrológicos-Hidráulicos
 - Tomo VII Estudos de Engenharia Estudos Geológicos-Geotécnicos
 - Tomo VIII Estudos Operacionais
 - o Tomo IX Estudos Operacionais Planilhas dos Estudos Operacionais
 - o Tomo X Estudos Operacionais Simulação Operacional
 - Tomo XI Estudos Jurídicos
 - Tomo XII Estudos Socioeconômicos e de Externalidades
 - Tomo XIII Relatório de Imagens
- Volume 4 Avaliação Econômico-financeira e de Riscos
- Volume 4A Orçamento/CAPEX
- Volume 5 Relatório de Imagens

2 OBJETIVO

O presente volume tem o objetivo de apresentar os Estudos da Geologia e Geotecnia para a implantação e/ou readequação da ferrovia no trecho compreendido entre MARACAJU (MS), Guaíra (PR), Cascavel (PR), Guarapuava (PR) e PARANAGUÁ (PR), e do RAMAL Cascavel – Foz do Iguaçu, numa extensão aproximada de 1.304 km.

Estes trechos foram subdivididos da seguinte forma:

- NOVA FERROVIA PARANAGUÁ (PR) MARACAJU (MS);
- RAMAL FERROVIÁRIO CASCAVEL (PR) FOZ DO IGUAÇU (PR).

Estes estudos consideraram a coleta de dados bibliográficos da região para os itens de geologia, geomorfologia e pedologia, e os dados geotécnicos através das sondagens e ensaios, que permitiram caracterizar os solos e rochas, da área de abrangência do traçado.

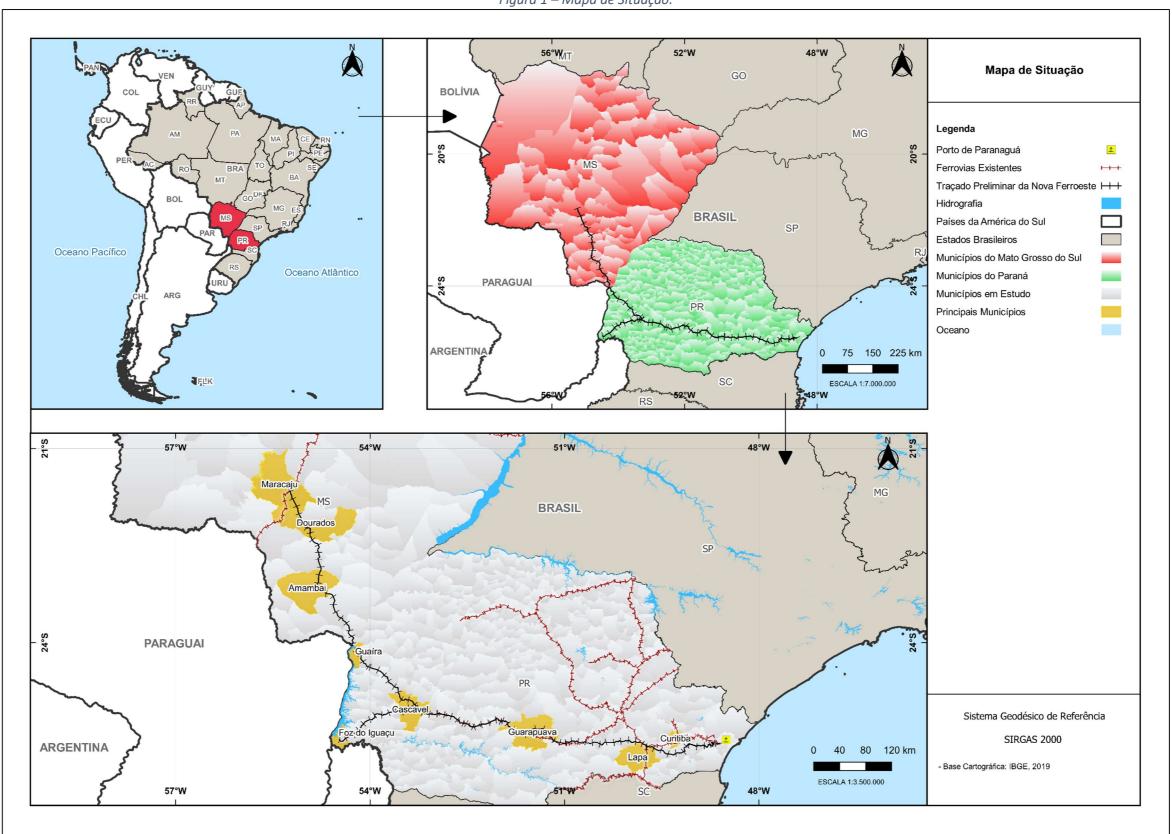
Disto posto, o relatório em questão, intitulado Relatório Geológico - Geotécnico, está estruturado em **14 capítulos**, a contar com a apresentação e objetivo.

O capítulo 3 contempla o mapa de localização do empreendimento em questão, destacando os principais municípios amalgamados pelos estudos.

Nos **capítulos 4, 5** e **6** são apresentados os estudos bibliográficos sobre a Geologia, Geomorfologia e Pedologia respectivamente.

Já no capítulo 7 são apresentadas as definições e critérios sobre Geotecnia, sendo apresentado os resultados das sondagens no capítulo 8 e dos ensaios no capítulo 9.

O capítulo 10 contempla os resultados dos ensaios sísmicos, o capítulo 11 apresenta a análise de estabilidade dos taludes, o capítulo 12 apresenta a suscetibilidade a processos erosivos e o capítulo 13 apresenta o zoneamento geotécnico.


Por fim, no **capítulo 14** estão as referências bibliográficas seguidas por todos os APÊNDICEs dos estudos do referido relatório.

3 MAPA DE SITUAÇÃO

Figura 1 – Mapa de Situação.

Fonte: Consórcio TPF-SENER.

ESTUDOS GEOLÓGICOS - GEOTÉCNICOS

4 GEOLOGIA

Os estudos foram baseados na interpretação do mapa geológico disponibilizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE) em escala 1:250.000, e também consultados os textos nos documentos técnicos, tais como apresentado em Lacerda Filho, et al (2006) onde apresenta um texto explicativo sobre a geologia do estado do Mato Grosso do Sul, e para o estado do Paraná, uma síntese sobre a geologia regional atribuído ao documento editado pelo Mineropar (Serviço Geológico do Paraná) em 2005.

O início do traçado a partir de Maracaju-MS até Guaíra-PR, passando por Dourados-MS encontra-se a Formação Serra Geral pertencente ao Grupo São Bento, com passagem pela Formação Caiuá do Grupo Bauru.

Continuando no traçado até Guarapuava, incluindo o ramal Cascavel – Foz do Iguaçu, também se encontra a Formação Serra Geral constituída pela Cordilheira Alta.

A partir de Guarapuava se iniciam os grupos pertencentes à Bacia do Paraná sendo entre Guarapuava e Irati encontram-se formações do Grupo Passa Dois (Formação Teresina e Rio do Rasto), entre os municípios de Irati e Rebouças as Formações Irati e Serra Alta, em Fernandes Pinheiro é encontrada a formações do Grupo Guatá com a Formação Palermo e até São João do Triunfo, a Formação Rio Bonito.

Entre São João do Triunfo e Lapa na divisa com o município de Balsa Nova, encontra-se o Grupo Itararé com as Formações Rio do Sul e Campo Tenente, passando por um pequeno trecho da Formação Furnas pertencente ao Grupo Paraná.

Em contato com o último grupo citado, inicia-se a região constituída pelas rochas mais antigas do estado denominado Escudo Paranaense, que abrange todo o primeiro Planalto e o Litoral.

Neste trecho, o Complexo Gnáissico Migmatito Costeiro é predominante até São José dos Pinhais, com passagens pela Formação Guabirotuba próximo a Curitiba, e entre as Serras Altas e Morretes, encontra-se a Migmatitos e a Formação Guaratubinha.

A partir deste ponto, até o final do traçado, encontram-se os granitos e da Serra do Mar Paranaense e os depósitos litorâneos, fluviomarinhos, aluvionares e coluviais holocênicos.

Nas margens dos rios principais Iguaçu, Imbituva e Paraná na divisa com Mato Grosso do Sul, encontram-se depósitos aluvionares holocênicos, de origem fluvial normalmente composto por materiais areno-argilosos a cascalhosos não consolidados, não raro com acumulações de argilas de baixo suporte em áreas mal drenadas.

A *Tabela 1* apresenta as principais formações e suas características geológicas encontradas ao longo do traçado. O mapa com as unidades geológicas com a indicação do traçado pode ser visualizado no APÊNDICE A.

Tabela 1 – Principais formações encontradas ao longo do traçado.

ERA	PERÍODO	GRUPO	FORMAÇÃO	ROCHAS E FÓSSEIS PRINCIPAIS
	Quaternário	Sedimentos Recentes	Guabirotuba	Argilitos, arenito arcoseano e diamictito; ocorre conglomerado oligomítico basal e depósitos de caliche dispersos lateralmente
			Depósitos aluvionares holocênicos	Areia, areia quartzosa, cascalheira, silte, argila e, localmente, turfa
Cenozoico			Depósitos litorâneos holocênicos	Areia quartzosa, silte e argila
			Depósitos fluviomarinhos holocênicos	Areia síltico argilosa, mal selecionada com laminação plano-paralela incipiente
			Depósitos coluviais holocênicos	Areia, cascalho e argila
	Cretáceo	Bauru	Caiuá	Arenitos arroxeados (Therapoda)
	Jurássico- Triássico	São Bento	Serra Geral	Basalto e basalto andesítico em tholeítico; riolito e riodacito; intercala camadas de arenito, litarenito e arenito vulcânico
Mesozoico			Botucatu	Arenito fino a grosso de coloração avermelhada, grãos bem arredondados e com alta esfericidade, dispósitos em <i>cosets</i> de estratificações cruzadas de grande porte; ambiente continental desértico depósitos de dunas eólicas
			Serra Geral - Fácies Cordilheira	Basalto e basalto andesítico em derrames compostos
			Alta	'
			Teresina	Argilito, siltito e arenito muito fino e fino, cinza escuro a esverdeado, geometria tabular ou lenticular alongada, lentes e concreções de calcário; ambiente marinho com tempestades a transicional (marés)
Paleozoico		Passa Dois	Rio do Rasto	Pelito e arenito com dominância de camadas tabulares ou com lenticularidade muito estendida; siltito verde ou avermelhado, tabular, arenito fino, arroxeado, róseo a esbranquiçado, tabular ou lenticular; ambiente transicional, deltaico, lacustre, eólico e raros depósitos fluviais
		Grupo Guatá	Irati	Folhelho, siltito e argilito cinza escuro; calcário, marga e folhelho betuminoso com fósseis de répteis mesossaurídeos; ambiente marinho, de águas calmas abaixo do nível de ação das ondas com períodos de estratificação

ERA	PERÍODO	GRUPO	FORMAÇÃO	ROCHAS E FÓSSEIS PRINCIPAIS
				da coluna de água ou com influência de tempestades
			Serra Alta	Folhelho, siltito e argilito cinza escuro, em camadas tabulares; ambiente marinho em profundidades abaixo do nível de ação das ondas
			Palermo	Siltito, siltito arenoso, arenito fino a muito fino e folhelho; lentes de arenito grosso e conglomerado com seixos discóides; cor cinza a cinza esverdeada, amarelada quando alterados; ambiente marinho raso
	Ordoviciano	Bacias Restritas	Guaratubinha	Tufos variados, com estruturas como flaser, wavy, linsen e marcas de onda; andesito porfirítico, com vidro vulcânico e amígdalas com quartzo, epidoto e calcita; lápili-tufo, tufos finos e ignimbrito e cinza vulcânica ortoconglomerado polimítico de matriz arenosa e seixos de gnaisse, quartzo leitoso, filito, xisto granitoide calcialcalino, quartzito e granulito; riolito a álcali-riolito com vulcanoclásticas subordinadas
			Furnas	Arcóseo grosso, texturalmente imaturo, arenito conglomerático e conglomerado oligomítico; arenito de granulação fina interdigitado com argilito, siltito e folhelho; ambiente fluvial a transicional com depósitos de deltas de rios entrelaçados e litorâneo.
	Devoniano	Bacia do Paraná	Complexo Atuba	Anfibolito lenticularizado e metaultramáfica como buodins métricos; gnaisse granodiorítico a monzogranítico com diques dioríticos; epidoto gnaisse tonalítico, biotita-hornblenda gnaisse, biotita gniasse, hornblenda naisse, migmatito paraderivado e estromático; intercalações de matamáfica e mataultramáfica

Fonte: Consórcio TPF-SENER

5 GEOMORFOLOGIA

A descrição da geomorfologia é feita través do estudo do mapa geomorfológico disponibilizado pelo IBGE em escala 1:250.000 e nos textos do documento Geodiversidade do Estado do Mato Grosso do Sul da CPRM de 2010 e, também, do Relatório II do Estudo de Engenharia pertencente à mesma ferrovia disponibilizado pela ANTT (Agência Nacional de Transportes Terrestres), além de referências indicadas ao longo do texto.

A geomorfologia ao longo do traçado é predominante à feição de planaltos, normalmente com ocorrência de estruturas escarpadas nos locais onde existe mudança litológica considerável. A considerar a **Serra de Maracaju** (**Planalto Maracaju**), gerada a partir da erosão diferencial nas regiões onde os arenitos estão em contato com os basaltos mesozoicos, localizado a oeste do município homônimo, que serve de divisor de águas entre os rios Paraná e Paraguai; a **Serra de Amambai**, importante divisor e, também, limite entre o Brasil e o Paraguai, também possui a mesma origem.

Nesta unidade é visível o predomínio de feições do tipo planaltos e degraus estruturais, estes normalmente associados a afloramentos de rochas mais resistentes aos processos erosivos, aqui representados pelos basaltos mesozoicos e por arenitos com alta cimentação por sílica.

Essa unidade possui cotas altimétricas variando de 200 a 650 m, dissecação com intensidade variando de mediana a muito forte e aprofundamento de drenagem muito fraca a fraca, vales em "V", a declividade do terreno geralmente é baixa, rumando para a bacia do Rio Paraná.

Duas subunidades podem ser identificadas: a primeira, que se estende de Maracaju (MS) até Dourados (MS), é constituída por planaltos com cotas altimétricas variando 350 a 500 m na porção central e de 200 a 350m a noroeste da região; e, a segunda, que abrange área de Dourados (MS) até Mundo Novo (MS), possui cotas altimétricas variando de 500 a 650 m, normalmente constituída por colinas amplas e suaves.

A faixa regional é dominada por terrenos aplainados com colinas suaves e topos pouco largos, vales abertos medianamente espaçados entre si, ramificados e vertentes com baixas declividades.

Na faixa limite do **Planalto Maracaju**, nas extremas cabeceiras das drenagens da bacia do Paraná e do Paraguai (área do divisor hidrográfico), as colinas suaves apresentam topos estreitos, vales abertos pouco espaçados entre si, bastante ramificados e vertentes com declividades baixas a médias.

Próximo a Guaíra, são encontradas as **Planícies Fluviais**, sendo esta unidade mais bem observada nas margens do Rio Paraná, porém porções menores podem ser observadas nas margens das principais drenagens da região de estudo. É caracterizado por possuir uma dissecação de muito baixa a baixa, normalmente decorrente da própria evolução da drenagem e declividade variando de suave a muito baixa. Não raro podem ser encontradas declividades maiores, normalmente rumando para a jusante dela.

As caraterísticas morfológicas descritas abaixo fazem parte da região de estudo que pertence ao **Terceiro Planalto Paranaense**.

Entre Guaíra e Maripá, encontra-se o **Planalto Campo Mourão**. Esse possui características mais distintas, apresenta baixa dissecação, com declividades que variam de 0 a 20% em um gradiente de

350 metros, com altitudes variando entre 500 e 850 metros. As formas de relevo dominante nesta unidade morfológica variam entre suave ondulado e ondulado, com topos alongados e aplainados (MEZZOMO, 2013).

Em seguida, até o município de Ibema, ocorre o **Planalto Cascavel Baixo Iguaçu** caracterizando-se por possuir uma dissecação moderada, com topos alongados e aplainados, drenagens convexas com aprofundamento moderado e vales em "V". As cotas altimétricas variam de 240 a 920m e declividade variando de suave a baixa rumando para norte-noroeste.

O **Planalto Apucarana** possui dissecação alta, com topos alongados e drenagens convexas com aprofundamento moderado, com vales em "V". Suas cotas altimétricas variam de 300 a 920m e declividade moderada a baixa rumando de noroeste para sudoeste. Essa caraterística se estabelece entre Ibema e Goioxim.

Dando sequência às características morfológicas, entre Goioxim até Prudentópolis aparece o **Planalto Palmas**, também conhecido como **Planalto de Guarapuava**, é formado em sua maioria pelos grandes e sucessivos derrames de lavas básicas do vulcanismo Gondwânico, do Pós-Triássico até o Eocretáceo, possuindo vulcanismo de fissura, de direção SE a NW, que hoje se encontra solidificada como diques de diabásio (PALHARES, 2001). Possui dissecação baixa, topos aplainados e drenagens retilíneas e convexas com aprofundamento baixo a moderado, com vales em "U". As cotas altimétricas variam de 280 a 1220m e declividade variando de moderada a baixa, normalmente rumando para sudoeste.

A partir de Prudentópolis até Lapa, insere-se o **Planalto Ponta Grossa**. Este pertencente ao **Segundo Planalto Paranaense** onde compreende boa parte das rochas sedimentares paleozoicas da Bacia do Paraná, possui uma dissecação moderada, com topos alongados e drenagens retilíneas e côncavas, moderadamente aprofundadas e com vales em "U". Possui cotas altimétricas variando de 480 a 1080m e declividade predominante de muito baixa a moderada, normalmente rumando para oeste.

Após a região de Curitiba, o traçado segue pelo **Planalto do Alto Iguaçu** e **Planalto de Curitiba**, forma uma paisagem suavemente ondulada, com planícies de várzeas intercaladas por sedimentos fluviais e paludais do Quaternário Recente, onde predominam argilas plásticas pretas de húmus cru ácido e areias brancas (DIAS, et al, 2004). Pertencem aos blocos soerguidos do **Primeiro Planalto Paranaense** e cinturão orogênico do atlântico.

Ainda neste trecho, o traçado corta a **Serra do Mar Paranaense**, com grandes maciços rochosos e escarpados sobre rochas graníticas e granitóides da Serra do Mar, conformando uma serra marginal onde se localiza o divisor de águas para o planalto interior a 1.250 m na parte norte, no centro atingese o primeiro planalto já a 895 m de altitude, na parte sul a 904 m (MAACK, 2002).

O trecho final do traçado segue por uma planície denominada **Planície Litorânea** e **Planícies Fluviomarinhas** de baixa dissecação. Tem como característica principal a acumulação fluviomarinha de forma plana, levemente inclinada, apresentando ruptura de declive em relação ao canal fluvial e à planície, entalhada em consequência de variação do nível marinho, por processos erosivos ou, ainda, por neotectônica. O mapa com a geomorfologia na região de interesse pode ser visualizado no APÊNDICE B.

6 PEDOLOGIA

Baseado no estudo do mapa pedológico disponibilizado pelo IBGE em escala 1:250.000, e no Manual Técnico de Pedologia elaborado pelo mesmo órgão, no artigo Desenvolvimento de classes e unidades geopedológicas a partir da interação entre a pedologia e a geotecnia de Antunes, et al (2013) e nos textos dos documentos Geodiversidade do Estado do Mato Grosso do Sul da CPRM de 2010 e A atuação do serviço geológico do brasil (CPRM) na gestão de riscos e resposta a desastres naturais de Sampaio, et al (2013).

As unidades pedológicas e suas características geotécnicas encontradas ao longo do traçado estão definidas abaixo.

6.1 LATOSSOLOS

São solos em avançado estágio de intemperização, muito evoluídos, geralmente fortemente drenados (permeabilidade significativa), normalmente muito profundos, os teores de argila aumentam gradativamente com a profundidade, distribuídos, sobretudo por amplas e antigas superfícies de erosão, pedimentos ou terraços fluviais antigos, normalmente em relevo plano e sua ondulado. São originados a partir das mais diversas espécies de rochas e sedimentos.

A pedologia de maior ocorrência no trecho da ferrovia, vai desde Maracaju (MS) a Eldorado (MS), entre Maripá (PR) e Ibema (PR), Laranjeiras do Sul (PR) e Guarapuava (PR), além de pequenas porções no município de Irati (PR), e encontrado também entre Lapa e São José dos Pinhais (PR). No ramal entre Cascavel – Foz do Iguaçu, são encontrados entre Cascavel (PR) e Céu Azul (PR) e entre Medianeira (PR) até Foz do Iguaçu (PR).

Nas regiões que se encontram os latossolos, prevalecem materiais de textura fina, argilosa ou argilosiltosa, com espessura que atingem dezenas de metros. Geralmente apresentam bom comportamento quanto a capacidade de suporte, compactação e expansão. Muito plásticos quando molhados. São de baixa erosividade natural, mantêm boa estabilidade em taludes de corte e são bons materiais de empréstimo. Porém, podem ser colapsíveis com valores de Nspt< 5 golpes, pois sofrem significativa redução de volume quando submetidos à aplicação de carga adicional.

Os tipos encontrados na região são: Latossolos Brunos Distróficos; Latossolos Brunos Distróficos + Nitossolos Háplicos Distróficos + Nitossolos Brunos Distróficos; Latossolos Vermelhos Distróficos + Argissolos Vermelhos Distróficos + Argissolos Vermelho-Amarelos Distróficos; Latossolos Vermelhos Distróficos + Latossolos Vermelhos Distroférricos; Latossolos Vermelhos Distroférricos; Latossolos Vermelhos Distroférricos + Latossolos Vermelhos Distroférricos + Latossolos Vermelhos Distroférricos.

6.2 ARGISSOLOS

São solos ricos em argila de baixa atividade, com predominância de texturas argilosas a argiloarenosas, resultantes de um avançado estado de pedogênese. Normalmente possuem cores avermelhadas e amareladas em tonalidades moderadas a fortes.

Considerado como a maior área de abrangência em ambos os estados, é encontrado entre Eldorado e Mundo Novo, no estado do Mato Grosso do Sul, em Guaíra, e num pequeno trecho em Araucárias, Morretes e Paranaguá no estado do Paraná.

Em trechos menos intemperizados onde ocorrem a presença de argila siltosa apresenta minerais expansivos o que podem ser problemáticos sobre a vista de suporte, promovendo a chamada erosão seca. Por isso, se expostos às variações dos estados úmido e seco, fendilham-se, desagregam-se em pequenas "pastilhas" e se tornam altamente erosivos. Em relevo muito acidentado, ou nas calhas de drenagens onde ocorram rochas basálticas, pode ocorrer à presença de rochas frescas ou de baixo grau intempérico, podendo possuir média a alta resistência ao corte por equipamentos mecânicos e hidráulicos.

Pode ocorrer o surgimento de fendilhamento generalizado, podendo soltar blocos em talude de corte. É comum haver blocos e matacões de rochas frescas isolados e irregularmente distribuídos ou até mesmo concentrados. Entre Ibema e Guarapuava os solos litólicos ou afloramentos de rocha, bastante comuns na região em virtude do relevo acidentado com altas declividades

Os tipos encontrados na região são: Argissolos Vermelho-Amarelos Distróficos + Nitossolos Háplicos Distróficos + Cambissolos Háplicos Tb Distróficos; Argissolos Vermelho Distróficos + Latossolos Vermelho Distróficos; Argissolos Vermelhos Eutróficos + Latossolos Vermelhos Distróficos + Argissolos Vermelhos Distróficos.

6.3 CAMBISSOLOS

Solos em início de formação, diferenciação dos horizontes é fraca ou pouco visível. Apresentam colorações mais fracas, principalmente acastanhadas e, normalmente, com preservação da estrutura da rocha original.

Ocorrem principalmente nas regiões entre Marquinho e Goioxim (PR), Guarapuava - Prudentópolis (PR) e, também, numa pequena região de Irati (PR), entre Fernandes Moreira (PR) até Lapa (PR) sendo uma grande extensão neste trecho, e entre São José dos Pinhais (PR) até Morretes (PR).

Predominam solos arenosos com cascalhos, provenientes das ocorrências sistemáticas de solos aluvionares. Para a construção destes cortes é necessário que seja conduzido uma drenagem superficial eficiente com imediata revegetação das faces dos taludes. O traçado se desenvolve preferencialmente nas encostas da Serra do Mar, produzindo solos argilosos em ambientes de depósito de tálus. As construções dos cortes deverão seguir normas de estabilidade, com drenagem superficial e subterrânea eficiente. Os cortes nos trechos com materiais de 3ª categoria poderão ter inclinações acentuadas. Podem apresentar elevada compressibilidade e baixa resistência os trechos em solo.

Os tipos encontrados na região são: Cambissolos Háplicos Tb Distróficos + Nitossolos Háplicos Distróficos + Neossolos Litólicos Distróficos; Cambissolos Háplicos Tb Distróficos + Cambissolos Húmicos Distróficos + Neossolos Litólicos Distróficos

6.4 NEOSSOLOS

São solos pouco evoluídos, predominantemente constituídos por material mineral, mas podem conter matéria orgânica. Normalmente apresentam fragmentos de rochas.

Ocorrem entre Ibema (PR) e Nova Laranjeiras (PR) entre Morretes (PR) e Paranaguá (PR,) e, também, pequenos trechos Medianeira e São Miguel do Iguaçu no ramal Cascavel – Foz do Iguaçu.

São solos arenosos friáveis, permeáveis, de alto potencial erosivo, que desmoronam com facilidade em talude de corte, principalmente se submetidos à concentração de águas pluviais. Em muitos locais, já se encontram em processo de arenização formando, por vezes, espessos areões inconsolidados e altamente erosivos. Evitar obras de terraplenagem ou exposição dos solos por longos períodos nas épocas de chuvas. São solos rasos e que geralmente já se encontram acima do topo rochoso ou com afloramentos de rocha.

Os tipos encontrados na região são: Neossolos Litólicos Distróficos + Cambissolos Háplicos Tb Distróficos + Nitossolos Háplicos Distróficos; Neossolos Litólicos Eutróficos + Cambissolos Háplicos Ta Eutróficos + Nitossolos Vermelhos Eutróficos; Neossolos Litólicos Eutróficos + Cambissolos Háplicos Tb Eutróficos + Argissolos Vermelho-Amarelos Distróficos.

6.5 NITOSSOLOS

Similares aos argissolos, os nitossolos possuem horizonte B nítico (reluzente) com argila de baixa atividade, normalmente de grandes espessuras. São comumente associados a alteração de rochas basálticas.

A faixa de ocorrência abrange pode ocorrer desde Ibema (PR) e Nova Laranjeiras (PR), em Fernandes Pinheiro (PR) e entre Céu Azul (PR) e Medianeira (PR) no ramal Cascavel – Foz do Iguaçu.

Compreende solos não saturados, cuja fração argila pode ser rica em óxido de ferro quando desenvolvida de rochas básicas. Pode ser indicador de perfil de intemperismo com solo residual jovem pouco espesso. Potencial ocorrência de material expansivo, podendo ser problemático como fundação e em taludes.

O tipo encontrado na região são os Nitossolos Vermelhos Eutróficos + Cambissolos Háplicos Tb Eutróficos + Latossolos Vermelhos Eutroférricos.

6.6 ORGANOSSOLOS

São solos constituídos predominantemente por depósitos de matéria orgânica, por vezes com texturas argilosas, normalmente com coloração variando do cinza ao preto. Podem ocorrer sob a forma de solos saturados e/ou hidromórficos.

A faixa de maior ocorrência se encontra entre Mundo Novo (MS) e Guaíra (PR), mais precisamente nas margens do Rio Paraná, mas é importante ressaltar que as principais drenagens, a lembrar como exemplo o Rio Iguaçu, podem possuir tais ocorrências a serem mapeadas.

São solos orgânicos e/ou organominerais, hidromórficos, desenvolvidos preponderantemente de detritos orgânicos em várias fases de transformação e podem apresentar misturas de sedimentos fluviomarinhos. São susceptíveis a apresentarem grandes deformações e baixa capacidade de suporte devido à alta compressibilidade, além de serem problemáticos para taludes de corte e aterro. Podem apresentar o NA elevado.

O tipo encontrado na região são os Organossolos Háplicos Hêmicos + Gleissolos Háplicos Ta Eutróficos + Cambissolos Háplicos Ta Eutróficos.

6.7 ESPODOSSOLOS

Ocupam as baixadas topográficas, sob ambiente de maior energia. Podem possuir cimentação no horizonte subsuperficial com oxi-hidróxido de ferro, o que os torna muitas vezes semelhantes a um arenito com cimento ferruginoso ou organo-ferruginoso. Podem apresentar hidromorfismo, o que pode configurar um solo de baixa compressibilidade e alta resistência, podendo ter o NA elevado.

Ocorre somente na região litorânea em Paranaguá, com o tipo de Espodossolo Himilúvico Órtico.

O mapa pedológico com a indicação do traçado pode ser visualizado no APÊNDICE C.

6.8 RECURSOS MINERAIS

Os materiais naturais utilizados nas construções ferroviárias são os materiais granulares como brita e areia, e os solos obtidos em áreas de empréstimo.

Considerando-se as extensões, observa-se que no trecho entre Maracaju (MS) e a Estação Ferroviária Engenheiro Bley, em Lapa (PR), a melhor formação geológica que apresenta rocha e potencial de produção de brita é a Serra Geral (basaltos), com locais em potencial para produção e distância de transporte razoáveis.

As areias lavadas e, secundariamente, os cascalhos, são exploradas de aluviões extraídas em ocorrências restritas, porém significativos, nos principais rios, especialmente dos rios Paraná Iguaçu, Brilhante e Dourados, entre outros menores.

Solos de áreas de empréstimo ocorrem praticamente ao longo de todo o trecho. Porém, somente os de composições areno-argilosas (Latossolos/Argissolos) foram identificados como tendo potencial para tal uso. Áreas de empréstimo de sublastro, também conhecidas como cascalheiras ou cascalho laterítico, aparentam serem mais restritas nas áreas em que ocorrem os basaltos da Formação Serra Geral, mas se faz necessário um mais amplo para averiguar a existência de tal material em quantidade e qualidade suficiente para a implantação da ferrovia, caso não ocorra pode haver a necessidade do uso de alternativa, como exemplo a mistura solo-cimento.

Para este levantamento foram utilizados dados da Agência Nacional de Mineração – ANM (antigo DNPM – Departamento Nacional de Produção Mineral), com auxílio de dados adquiridos junto a CPRM e o Mineropar para averiguar os locais com maior potencial para produção de agregados para uso na implantação da ferrovia em questão. Tais dados estão compilados nas cidades a seguir:

- Areia: Nas cidades de Amambaí em Mato Grosso do Sul, e no Paraná nos municípios de Altônia, Capitão Leônidas Marques, Prudentópolis, Araucária, Balsa Nova, Campo Largo, Contenda, Curitiba, Fazenda Rio Grande e Pinhais;
- Brita: Nas cidades de Maracaju, Itaporã e Naviraí em Mato Grosso do Sul com material derivado do basalto, e no Paraná as cidades de Toledo, Cascavel, e Guarapuava com brita derivada de basalto, em Irati um material de diabásio, e em Campo Largo, Curitiba, Campo Magro, São José dos Pinhais, Fazenda Rio Grande e Morretes uma brita derivada de gnaisse.

No APÊNDICE D é apresentado um mapa ilustrativo com os municípios supracitados com o traçado da ferrovia.

7 GEOTECNIA

7.1 CAMPANHA DE SONDAGENS

Para o estudo preliminar foi definido um plano de sondagens e ensaios a fim de levantar-se, avaliar-se e validar-se os aspectos geotécnicos. Além disso, os dados servirão para conceber, de forma mais assertiva, a concepção das alternativas de soluções geotécnicas para cada situação com viabilidade técnica – econômica.

O plano de sondagem tem como objetivo identificar e caracterizar os possíveis domínios geológicos - geotécnicos ao longo do traçado, e através da caracterização com os parâmetros básicos, embasar os estudos e projetos geotécnicos.

As sondagens definidas no plano englobam sondagem a trado (ST), sondagem a percussão (SP) e mista (SM), com quantidade e definição baseado no estudo geológico e identificações de aspectos que demandam atenção para soluções de engenharia.

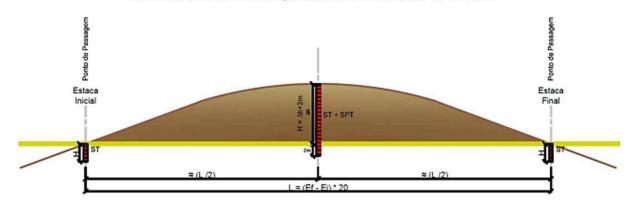
7.2 DEFINIÇÃO DA QUANTIDADE, ESPAÇAMENTO E PROFUNDIDADE DAS SONDAGENS

Os documentos normativos e de manuais e procedimentos técnicos sobre obras ferroviárias no Brasil são de atribuição do poder público federal sob a jurisdição do Departamento Nacional de Infraestrutura de Transportes (DNIT) e da VALEC Engenharia, Construções e Ferrovias S.A.

O desenvolvimento dos estudos de viabilidade da Nova FERROESTE foi orientado por Termo de Referência, onde são apresentados parâmetros básicos e premissas para o desenvolvimento do EVTEA-J, incluindo tópico dedicado especificamente aos requisitos necessários aos Estudos Geológicos e Geotécnicos (Estudos de Engenharia - Item 10.2).

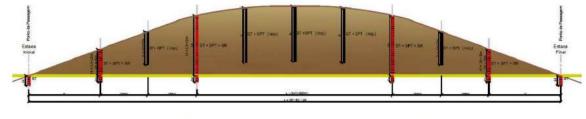
O Termo de Referência baseou-se na Instrução de Serviços Ferroviários (ISF) 207, dedicada à Estudos Geotécnicos para as fases de projeto básico e executivo. No âmbito do projeto básico, segundo a ISF 207, os estudos geotécnicos consistem em:

- Estudo dos cortes: análise voltada para a investigação do subleito, classificação de materiais de escavação, uso em corpos de aterros, subleito ou reforço de subleito, além da verificação da estabilidade dos taludes. Neste estudo, há ainda a definição da quantidade e tipologia de sondagens a serem executadas em função da extensão e altura dos cortes a serem executados em relação ao greide da ferrovia, com alguns exemplos mostrados a seguir;
- Estudos das fundações dos aterros: avaliação da espessura e classificação dos solos em locais que receberão aterros, a fim de identificar solos moles e/ou compressíveis, e verificação em função das tensões nas bases dos respectivos aterros;
- 3. Estudos das fundações de OAEs e OACs: definir e caracterizar os materiais e condição de fundação das obras a serem projetadas;


Estudo de ocorrência de material de construção: avaliação de áreas de empréstimos de solo, jazidas de areia (areais) e agregados de rocha (pedreiras) para uso em aterros, sublastros e lastro, além de agregados para uso em obras civis.

Este último não será definido na programação de sondagens, pois serão identificadas jazidas comerciais licenciadas próximas aos trechos de interesse ou através do estudo de mapeamento geológico com a indicação de jazidas potenciais próximas à via, após o estudo de compensação e levantamento dos volumes necessários para implantação da obra.

Para empréstimos de solo para os aterros, os estudos se basearão nos dados das sondagens e ensaios executados nos cortes, a fim de avaliar o aproveitamento dentro do trecho de interesse.


Figura 2 – Exemplos de quantidade e tipo de sondagem a ser executado em função da altura e extensão do corte.

PERFIL PRELIMINAR TIPO 1 PARA ELABORAÇÃO DO PLANO DE SONDAGEM PARA CORTES EM SOLOS ARENOSOS E/OU ARGILOSOS EXTENSÃO DE CORTE < 500 m; ALTURA MÁXIMA DO CORTE DE ATÉ 8 m

PERFIL PRELIMINAR TIPO 11 PARA ELABORAÇÃO DO PLANO DE SONDAGEM PARA CORTES EM SOLOS ARENOSOS E/OU ARGILOSOS

> EXTENSÃO DE CORTE ≈ 1.500 m A 2.000 m; ALTURA MÁXIMA DO CORTE DE ATÉ 20 m

- Observação 1:
- ST Sondagem a Trado (até o impenetrável);
- SPT Sondagem a Percussão Standard (até o impenetrável ou Ef Estaca final do corte. $\Delta h + 2m$);
- SR Sondagem Rotativa (até Δh + 2m).
- Observação 2:
- H Profundidade Total de Sondagem ou H Profundidade dos Furos ST + SPT + SR
- Ah Cota Vermelha do Corte:
- L Extensão Total do Corte.

- Observação 3:
- Ei Estaca inicial do corte;
- Observação 4:
- X: Distância do primeiro furo de (ST + SPT + SR). medida da boca inicial do corte até o ponto de cota vermelha (Δh) igual a 8 metros;
- Y: Distância do último furo de (ST + SPT + SR), medida da boca final do corte até o ponto de cota vermelha (Δh) igual a 8 metros.

Fonte ISF-207 - pág.14 e 24.

A VALEC, por sua vez, possui o documento denominado Especificação de Projeto: Estudos Geotecnológicos (80-EG-000A-29-0000 — Revisão 08), que também apresenta diretrizes para elaboração dos estudos no âmbito dos projetos básico e executivo. Entre as principais disposições do documento, estão:

- Investigações nas áreas de corte: devem ser realizadas em cada domínio geológico, caracterizado pelos estudos preliminares, devendo ser escolhidos cortes típicos em cada segmento homogêneo, a fim de caracterizar os diversos materiais de escavação, condições de suporte do subleito e identificação do lençol freático;
- Para cortes de até 300 m de extensão, a sondagem deve ser realizada no ponto central do corte ou no ponto de maior cota. Acima desta extensão (> 300 m), deverão ser realizados no mínimo 2 furos de sondagem, de modo que o espaçamento entre furos nunca seja superior a 300 m;
- Em trechos onde o greide acompanha o terreno natural, situação do projeto em questão, o espaçamento máximo entre furos de sondagens deve ser de 200 m (especificação para projeto executivo);
- Estudos geológicos e geotécnicos na fase de anteprojeto: as quantidades de sondagens podem ser reduzidas, sendo recomendada a execução de no mínimo 20% dos quantitativos previstos para o projeto básico, desde que seja possível a obtenção das informações mínimas necessárias para subsidiar o projeto.

Por fim, o Termo de Referência, orientou que para a programação das investigações deveriam ser identificados trechos representativos (testemunhos) dentro de características semelhantes de um trecho maior. Além disso, destacou que:

- Para os trechos testemunhos, as sondagens deveriam ser espaçadas em intervalos de 3,0 km, adotando-se num primeiro momento, uma programação uniforme independentemente do tipo litológico, baseada somente no relevo, traçado e greide da ferrovia;
- As sondagens para prospecção do subleito e cortes devem ser realizadas até 1,50 m abaixo da cota do greide projetado;
- Em túneis deve ser realizada prospecção geológica e geotécnica para avaliação de riscos e previsão de comportamento.

Assim, importante observar que as normativas apresentadas buscam, através dos critérios e premissas apresentados para a prospecção geotécnica, obter o máximo de dados necessários sobre as diferentes litologias que podem ser encontradas ao longo de obras lineares, visando dar o adequado suporte para o desenvolvimento dos projetos básico e executivo. Já, na etapa de estudos preliminares de engenharia, caso do presente Estudo de Viabilidade, busca-se traçar o perfil o geológico e geotécnico da área sobre a qual a ferrovia se desenvolverá, identificando eventuais riscos para o projeto e verificando sua viabilidade técnico—econômica.

Observando os critérios apresentados no Termo de Referência e comparando-os com as instruções dos órgãos competentes, principalmente a ISF – 207 do DNIT, observam-se as algumas diferenças nas diretrizes, notando-se as seguintes observações:

- 1. Há uma diferenciação sobre a profundidade das sondagens para prospecção relativa às áreas de corte e estudo do subleito abaixo do greide projetado, sendo 2,0 m na instrução do DNIT e 1,50 m no Termo de Referência, sendo este último semelhante à profundidade definida na instrução da VALEC;
- 2. No termo de Referência, define-se que a distribuição das sondagens deve ser feita de forma uniforme dentro do trecho testemunho, levando em conta somente aspectos relativos à geometria da ferrovia e relevo, o que difere dos critérios de ambas as instruções, as quais se baseiam em identificação de características geológicas geotécnicas específicas num determinado trecho. Devido à grande heterogeneidade de rochas e solos, principalmente no Estado do Paraná, o que pode ser visualizado no capítulo posterior, a identificação dos trechos testemunhos geraria em certos locais segmentos muito pequenos com as mesmas características homogêneas ao longo do traçado;
- 3. A instrução ISF 207 apresenta diversos croquis com a distribuição e tipologia das sondagens em função da extensão e altura dos cortes, portanto, como o Termo de Referência se baseia nesta instrução, mesmo com a identificação dos trechos testemunhos num aspecto geral conforme à situação supracitada, a quantidade de furos de sondagens seria demasiadamente alta, podendo inviabilizar a campanha em relação ao tempo de execução e custos.

Desta forma, entende-se que atender aos critérios do Termo de Referência para a campanha de sondagens poderá ser inviável na etapa de projeto em questão devido a quantidade de furos que deverão ser executados.

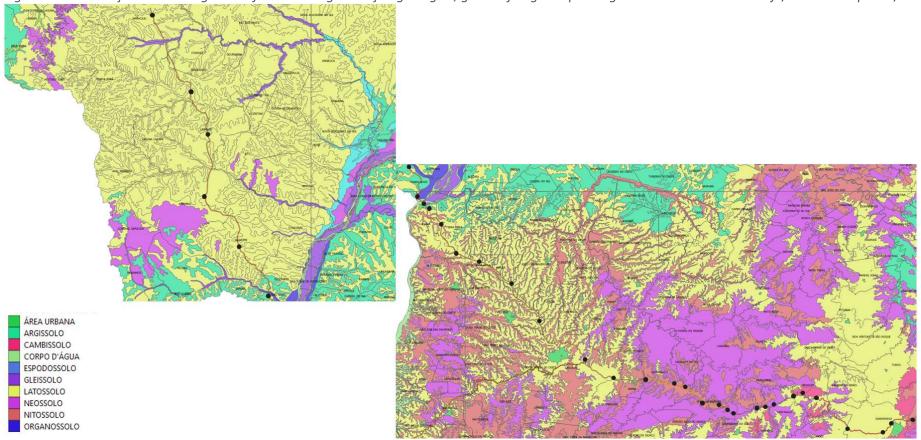
Entende-se também que, de forma mais racional, a instrução da VALEC pode ser tomada como um referencial para a elaboração da campanha de sondagens a qual, além de definir uma condição para anteprojeto (estudo preliminar), tem considerações sobre quantidades de furos de sondagens, principalmente para áreas de corte e análise do subleito, onde define que até para o nível de projeto básico, uma sondagem é suficiente e sem comprometer a obtenção dos dados necessários para embasar o estudo de engenharia.

7.3 CRITÉRIOS ADOTADOS

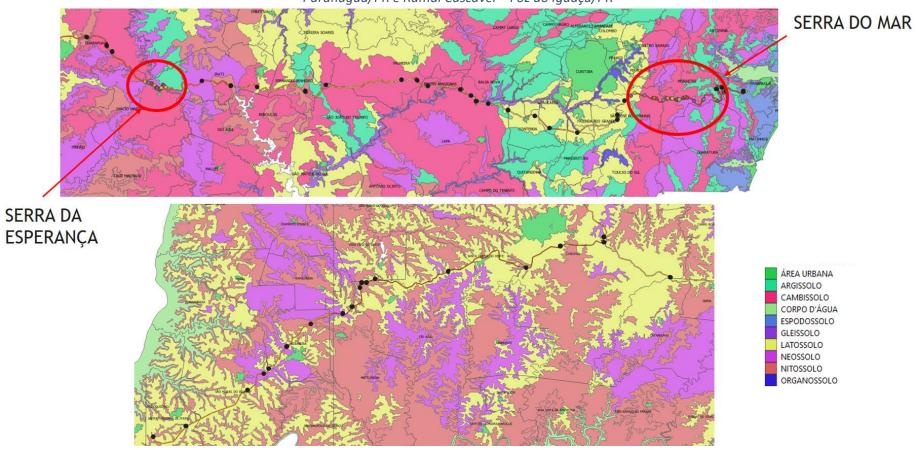
7.3.1 CRITÉRIO GERAL

Foram definidas sondagens em regiões identificadas no estudo dos mapas geológicos, geomorfológico e pedológico com características semelhantes ao longo do traçado, e as sondagens distribuídas conforme as litologias observadas no estudo, a fim de obter o máximo de dados geotécnicos possíveis e delimitar as unidades geotécnicas homogêneas. Os mapas estudados foram os disponibilizados pelo IBGE.

A seguir está apresentada a distribuição das sondagens mostrando a heterogeneidade dos solos encontrados ao longo do traçado da ferrovia. Conforme critério, é possível observar um maior espaçamento entre as sondagens em regiões consideradas homogêneas, que é o caso do sul do Mato Grosso do Sul e parte do oeste do Paraná, e uma distribuição mais aproximada em regiões com maior


diferenciação de solos e rochas, considerando também os locais de OEA e túneis que se concentram nas Serra do Mar e Serra da Esperança.

As sondagens locadas conforme figuras a seguir, estão em APÊNDICE com a base de imagem do Google Earth compartimentada por trechos homogêneos denominados como subtrechos, e a série de sondagens especificada para cada trecho respectivamente.



7.3.2 CRITÉRIO DE USO E TIPOLOGIA DE SONDAGEM

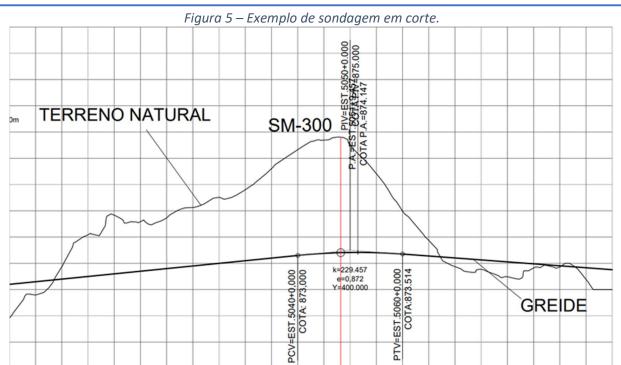
Conforme descrito no Termo de Referência e documentos normativos dos órgãos competentes, as sondagens foram definidas para atendimento das seguintes situações:

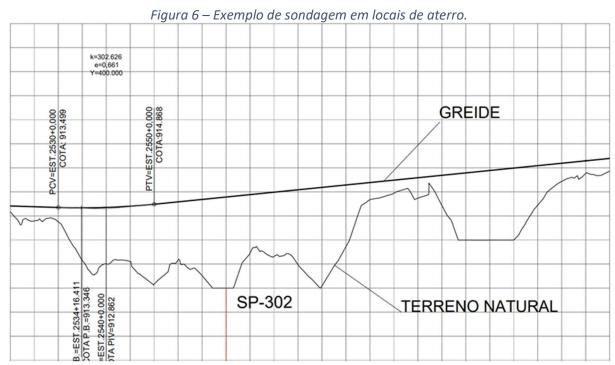
- 1 **Sondagens a trado (ST)** para coleta de amostras que serão submetidas aos ensaios de caracterização e para obtenção da capacidade de suporte dos solos através do CBR (*California Bearing Ratio*) ou ISC (Índice de suporte Califórnia), estudo do subleito;
- **2 Sondagens a percussão (SP)** em cortes com maiores alturas para identificação e classificação de material para uso em aterros na própria ferrovia, classificação de material de escavação, além da obtenção de parâmetros geotécnicos por correlação através do Nspt para balizar a verificação da estabilidade dos taludes e/ou contenções;
- **3 Sondagens a percussão (SP)** em locais de aterros para identificação de solos moles e/ou compressíveis (definição da profundidade), além da obtenção de parâmetros geotécnicos por correlação através do Nspt para estudo de capacidade de suporte e balizar o estudo de engenharia para tal situação;
- **4 Sondagens a percussão (SP)** próximas a pontes e viadutos existentes para otimização dos projetos de fundação das OAEs;
- **5 Sondagens mista (SM)** para classificação de material de escavação em áreas de corte e emboques de túneis, identificação da litologia e possível compartimentação das classes de maciço, além de balizar o estudo de engenharia.
- **6 Ensaios sísmicos (eletrorresistividade)** para regiões próximas a túneis em que a execução de sondagem se mostre inviável devido à dificuldade de acesso (Termo de Referência pg.84).

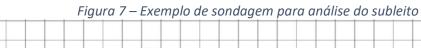
As sondagens deverão seguir suas respectivas normas ou no caso da falta de normatização, serão seguidas as recomendações de manuais amplamente utilizados no meio técnico. Abaixo estão apresentadas a seguinte documentação:

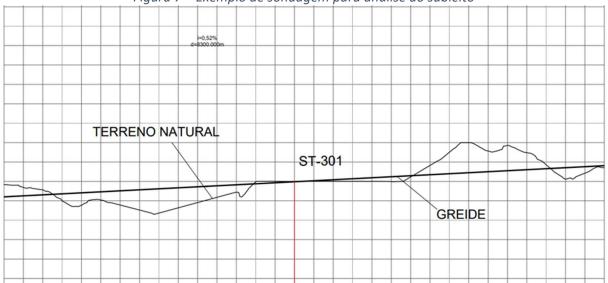
- NBR 9603:2015 Sondagem a Trado Procedimento;
- NBR 6484:2020 Solo Sondagem de simples reconhecimento com SPT Método de ensaio;
- DNER-PRO-102:1997 Sondagem de reconhecimento pelo método rotativo ou o BOLETIM 03
- ABGE: 1999 Manual de Sondagens;
- NBR 6502: 1995 Rochas e Solos.

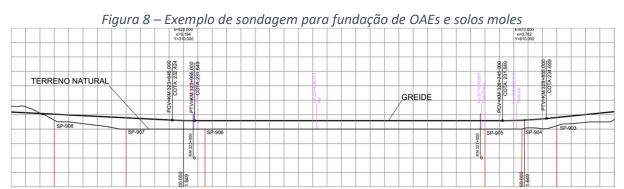
A seguir são apresentados exemplos da aplicação de cada tipo de sondagem em cortes longitudinais para ilustrar a utilização delas.

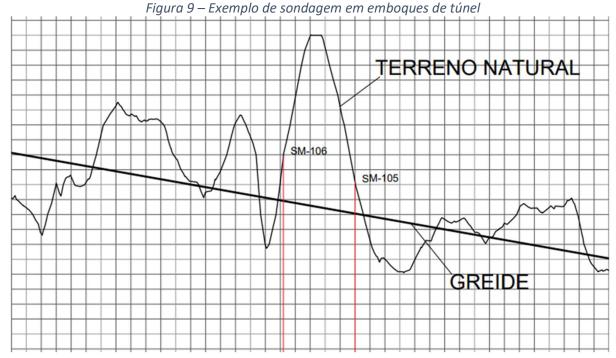





Fonte: Elaborado pelo Consórcio TPF-SENER.







Fonte: Elaborado pelo Consórcio TPF-SENER.

7.3.3 CRITÉRIOS DE PARALISAÇÃO

As sondagens deverão seguir os seguintes critérios de paralisação conforme a tipologia a qual será executada:

1 - Subleito:

 A sondagem deverá atingir até 1,50 metros de profundidade abaixo do greide de terraplenagem (profundidade definida em projeto);

2 - Cortes:

- A sondagem deverá atingir até 1,50 metros de profundidade abaixo do greide de terraplenagem (profundidade definida em projeto);
- Em caso do uso de sondagem mista, paralisar quando obter 5,0 metros subsequentes com recuperação igual ou superior a 90%, limitando-se à profundidade definida.

3 - Aterros:

- Para o estudo preliminar definiu-se uma profundidade máxima de 10 metros, ou quando ocorrer as seguintes situações antes da profundidade definida;
- For encontrado solo com resistência mínima de Nspt de 15 golpes/30 cm em 3,0 metros consecutivos;
- Ocorrer o impenetrável pelo trépano de lavagem com 3 ciclos consecutivos de 10 minutos, com penetração inferior a 5 cm em cada ciclo.

4 - OAE:

Limite máximo de 40 metros;

- Terreno apresentar resistência maior ou igual a Nspt de 30 golpes/30 cm em 10 metros consecutivos;
- Ocorrer o impenetrável pelo trépano de lavagem com 3 ciclos consecutivos de 10 minutos, com penetração inferior a 5 cm em cada ciclo.

5 - Túneis:

Profundidade definida em projeto

7.4 ENSAIOS DE CARACTERIZAÇÃO

Amostras de solo de alguns furos de sondagem deverão ser coletadas e submetidas a ensaios de caracterização conforme definidos abaixo.

- Granulometria: NBR 7181:2016 Versão Corrigida 2:2018;
- Limite de Liquidez: NBR 6459:2016 Versão Corrigida:2017;
- Limite de Plasticidade: NBR 7180:2016;
- Umidade natural: NBR 16097:2012;
- Densidade in situ: NBR 7185:2016;
- Compactação: NBR 7182:2016 Versão Corrigida:2020;
- ISC e Expansão: NBR 9895:2016 Versão Corrigida:2017.

7.5 SEGMENTAÇÃO DO TRAÇADO GEOMÉTRICO

Devido à grande extensão da Ferrovia a ser implantada, o traçado foi segmentado em doze subtrechos, visando proporcionar melhor trabalhabilidade no desenvolvimento do traçado geométrico.

Além disso, para desenvolvimento dos estudos geológicos e geotécnicos, o traçado também foi subdividido em onze segmentos homogêneos, assim definidos considerando os segmentos homogêneos preliminarmente apresentados no Termo de Referência desta contratação. Cabe observar também que no início de cada segmento homogêneo a quilometragem foi reiniciada.

Na *Tabela 2* e na *Figura 10* está demonstrada a correlação entre os subtrechos e os segmentos homogêneos.

Tabela 2 – Correlação entre os subtrechos e os segmentos homogêneos.

TRECHO	SUBTRECHO	SEGMENTO HOMOGÊNEO	KM INICIAL (CIDADE)	KM FINAL (CIDADE)
	1.0.1	1	0 + 000 (Maracaju)	120 + 000 (Caarapó)
	1.0.1	2	120 + 000 (Caarapó)	328 + 000 (Guaíra)
	1.0.1	3	328 + 000 (Guaíra)	377 + 499 (Terra Roxa)
	1.0.2	3	377 + 499 (Terra Roxa)	539 + 016 (Guaraniaçu)
	1.1.1		539 + 016 (Guaraniaçu)	598 + 054 (Nova Laranjeiras)
	1.2	4	598 + 054 (Nova Laranjeiras)	613 + 486 (Laranjeiras do Sul)
	1.3.1		613 + 486 (Laranjeiras do Sul)	671 + 310 (Goioxim)
1 (Maracaju - Paranaguá)	1.3.2	5	671 + 310 (Goioxim)	732 + 096 (Guarapuava)
	1.4.1	5	732 + 096 (Guarapuava)	737 + 465,57 (Guarapuava)
	1.4.1	6	737 + 465,57 (Guarapuava)	832 + 002 (Irati)
	1.4.2	7	832 + 002 (Irati)	965 + 457 (Lapa (Eng. Bley)
	1.5	8	965 + 457 (Lapa (Eng. Bley)	1.051 + 907 (São José dos Pinhais)
	1.6	9	1.051 + 907 (São José dos Pinhais)	1.068 + 907 (Morretes)
	1.6	10	1.068 + 907 (Morretes)	1.137 + 679,774 (Paranaguá)
2	2.2	11	0 + 000 (Foz do Iguaçu)	68 + 715 (Matelândia)
(Foz - Cascavel)	2.1	11	68 + 715 (Matelândia)	166 + 459 (Cascavel)

Figura 10 – Correlação entre os subtrechos e os segmentos homogêneos.

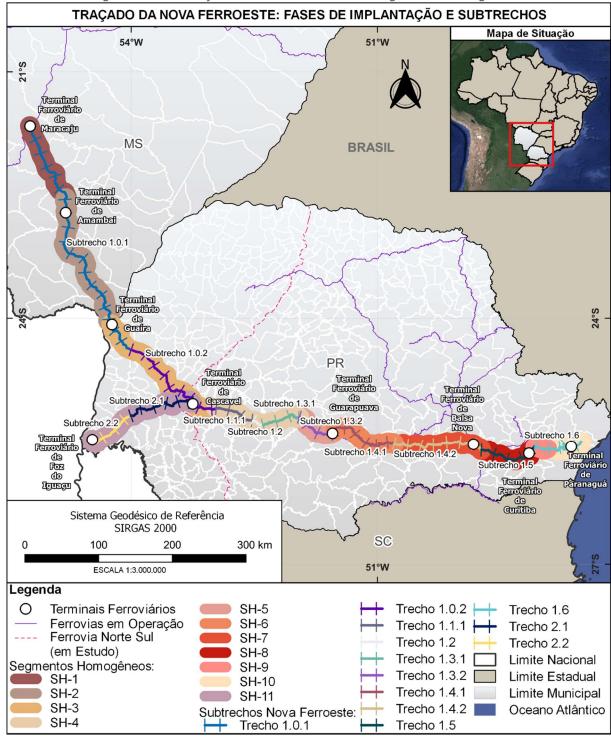


Tabela 3 – Quilometragem real dos Subtrechos.

SUBTRECHO	TRECHO	COMPRIMENTO (m)	KM INICIAL (m)	KM FINAL (m)
Subtrecho 1.0.1	1	377.499	0	377.499
Subtrecho 1.0.2	1	161.517	377.499	539.016
Subtrecho 1.1.1	1	59.038	539.016	598.054
Subtrecho 1.2	1	15.432	598.054	613.486
Subtrecho 1.3.1	1	57.824	613.486	671.310
Subtrecho 1.3.2	1	60.786	671.310	732.096
Subtrecho 1.4.1	1	105.906	732.096	838.002
Subtrecho 1.4.2	1	127.455	838.002	965.457
Subtrecho 1.5	1	86.450	965.457	1.051.907
Subtrecho 1.6	1	85.773	1.051.907	1.137.680
Subtrecho 2.1	2	97.744	68.715	166.459
Subtrecho 2.2	2	68.715	0	68.715

Tabela 4 – Quilometragem real dos segmentos homogêneos.

SIGLA	SUBTRECHO	TRECHO	COMPRIMENTO	KM INICIAL	KM FINAL (m)
			(m)	(m)	
SH-1	Segmento homogêneo 1	1	120.000	0	120.000
SH-2	Segmento homogêneo 2	1	208.000	120.000	328.000
SH-3	Segmento homogêneo 3	1	211.016	328.000	539.016
SH-4	Segmento homogêneo 4	1	132.294	539.016	671.310
SH-5	Segmento homogêneo 5	1	66.156	671.310	737.466
SH-6	Segmento homogêneo 6	1	94.536	737.466	832.002
SH-7	Segmento homogêneo 7	1	133.455	832.002	965.457
SH-8	Segmento homogêneo 8	1	86.450	965.457	1.051.907
SH-9	Segmento homogêneo 9	1	17.000	1.051.907	1.068.907
SH-10	Segmento homogêneo 10	1	68.773	1.068.907	1.137.680
SH-11	Segmento homogêneo 11	2	166.459	0	166.459

8 RESULTADOS DAS SONDAGENS

Os itens a seguir apresentam um resumo geral das sondagens e ensaios executados em toda a extensão da ferrovia, estando com as informações mais detalhadas nos respectivos itens de cada segmento e resultados dos ensaios, apresentados nos capítulos subsequentes.

A *Tabela 5* apresenta as quantidades de cada tipo de sondagens, comprimentos perfurados e ensaios de campo e laboratório e geofísicos.

Tabela 5 – Resumo de quantidades e comprimentos de sondagens e ensaios realizados no estudo.

SONDAGEM	UNIDADE	COMPRIMENTO (m)
PERCUSSÃO - SP	42	784,45
MISTA - SM	20	420,71 (SOLO)
IVIISTA - SIVI	39	853,04 (ROCHA)
TRADO - ST	51	282,00
TOTAL	132	2.340,20

ENSAIOS	UNIDADE	EXTENSÃO (m)
CAMPO E LABORATÓRIO	52	-
GEOFÍSICO	74	22.050,00

Tabela 6 – Resumo de sondagens e ensaios do SH-1, 2 e 3.

							ONDACEM	TUDEIU	U - NESUITIO U	e sondagens e ensaios do SH-1, 2 e 3.		DDE\//530	DE ENCALOS		ODATÓDIO -			
	T		T			SC	ONDAGEM					PREVISAO	DE ENSAIOS E	EM CAMPO E LABO	JRATURIU			
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	COORE	DENADAS	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA COMPLETA	LIMITES ATTERBERG	UMIDADE NATURAL	DENSIDADE IN SITU	COMPACTAÇÃO	ISC E EXPANSÃO		
						ESTE (X)	NORTE (Y)	(m)	(m)						NORMAL			
TRECHO 1.	.0.1			1		1	,						1	•				
	1	SM-902	MISTA	372+000	EIXO	799367,572	7302359,483	33	33,45	PROFUNDIDADE DEFINIDA	x	x	x		x*	x*		
	ST-S	M-902	TRADO					10	10,00	PROFUNDIDADE DEFINIDA	^	^	^		^	^		
	2	SP-902	PERCUSSÃO	348+800	EIXO	790779,493	7321294,944	-	19,45	IMPENETRÁVEL	x*	x*	x*	x	x*	x*		
	ST-S	P-902	TRADO					1,5	1,50	PROFUNDIDADE DEFINIDA	^	^	^	^	^	^		
	3	SP-903	PERCUSSÃO	329+000	EIXO	781002,307	7334616,430	-	10,45	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*		
	ST-S	SP-903	TRADO					1,5	1,50	PROFUNDIDADE DEFINIDA	^	^	_ ^	^	^	^		
3	4	SP-904							3,64	IMPENETRÁVEL								
	DESLOC.	SP-904A	PERCUSSÃO	328+500	EIXO	780558,243	7334844,892	-	2,95	IMPENETRÁVEL		*			. *			
	DESLUC.	SP-904B							5,50	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*		
	ST-S	SP-904	TRADO					1,5	1,50	PROFUNDIDADE DEFINIDA								
	5	SP-905							6,23	IMPENETRÁVEL								
	DECLOS	SP-905A	PERCUSSÃO	328+000	EIXO	780172,826	7335151,328	40	5,49	IMPENETRÁVEL								
	DESLOC.	SP-905B							5,76	IMPENETRÁVEL								
	6	SP-906							5,97	IMPENETRÁVEL								
	DECLOS	SP-906A	PERCUSSÃO	328+001	EIXO	777700,752	7338292,740	40	5,51	IMPENETRÁVEL								
	DESLOC.	SP-906B							5,81	IMPENETRÁVEL								
	7	SP-907	PERCUSSÃO	328+002	EIXO	777044,231	7339047,048	-	-	CANCELADA ACESSO NEGADO	х*	x*	x*	х*	x*	x*		
	ST-S	SP-907	TRADO					1,5	-	CANCELADA ACESSO NEGADO								
	8	SP-908	PERCUSSÃO	328+003	EIXO	776448,631	7339840,082	-	13,45	IMPENETRÁVEL	x*	x*	*	x*	*	*		
2	ST-S	SP-908	TRADO					1,5	1,50	PROFUNDIDADE DEFINIDA	X.	X.	х*	X.	x*	x*		
	9	SM-903	MISTA	299+000	EIXO	772311,350	7358237,774	30	30,45	PROFUNDIDADE DEFINIDA	x*	x*	x*		*	*		
	ST-S	M-903	TRADO					10	10,00	PROFUNDIDADE DEFINIDA	X.	X ·	X		x*	x*		
	10	SP-909	PERCUSSÃO	245+200	EIXO	750115,605	7400413,306	10	10,45	PROFUNDIDADE DEFINIDA								
	11	ST-902	TRADO	186+200	EIXO	723502,308	7443012,642	1,5	1,50	PROFUNDIDADE DEFINIDA	х	х	х	х	Х	х		
	12	SM-904	MISTA	128+800	EIXO	727193,572	7495825,282	20	20,45	PROFUNDIDADE DEFINIDA	x*	x*	x*		*	x*		
	ST-S	M-904	TRADO					1,5	1,50	PROFUNDIDADE DEFINIDA	X *	X.	X		x*	Х.		
	13	SP-910							5,93	IMPENETRÁVEL								
	DECLOC	SP-910A	PERCUSSÃO	84+600	EIXO	714129,632	7532058,995	10	3,97	IMPENETRÁVEL								
1	DESLOC.	SP-910B					<u> </u>		4,87	IMPENETRÁVEL								
1	14	SP-911							4,96	IMPENETRÁVEL								
	DECLOC	SP-911A	PERCUSSÃO	6+600	EIXO	684642,220	7597561,358	40	4,34	IMPENETRÁVEL								
	DESLOC.	SP-911B		PERCUSSÃO	PERCUSSÃO						4,93	IMPENETRÁVEL						

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 7 – Resumo de sondagens e ensaios do SH-1, 2 e 3 (continuação).

							Tube	iu / – ne	esullio de soli	dagens e ensaios ao 311-1, 2 e 3 (continuação)	<i>)</i> .					
				SOND	AGEM							PREVISÃO [DE ENSAIOS EM	1 CAMPO E LABOR	ATÓRIO	
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	COORE	DENADAS	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E
3П	FUNCTIVO.	DEFINIÇAU	IIPO	ESTACA	PU3.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇAU	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
TRECHO 1.	0.2															
	1	SM-900	MISTA	516+200	EIXO	285210,178	7223207,613	18	18,45	PROFUNDIDADE DEFINIDA	.*	v*	*		v*	x*
	ST-S	M-900	TRADO					10	10	PROFUNDIDADE DEFINIDA	*	*	×		X	X
	2	SP-900	PERCUSSÃO	493+200	D	267688,572	7233184,771	-	23,53	IMPENETRÁVEL		.,				,,
	ST-S	SP-900	TRADO					1,5	1,5	PROFUNDIDADE DEFINIDA	X	×	×	x	X	X
3	3	SM-901	MISTA	491+122	EIXO	267947,321	7234534,528	3	34	RQD>90%	*	*	*		**	x*
	ST-S	M-901	TRADO					10	10	PROFUNDIDADE DEFINIDA	X.	X.	X.		X.	X.
	4	ST-900	TRADO	445+000	EIXO	240544,736	7259360,212	2	2,00	PROFUNDIDADE DEFINIDA	х	х	х	х	Х	х
	5	ST-901	TRADO	411+400	EIXO	223451,675	7283517,538	1,5	1,50	PROFUNDIDADE DEFINIDA	х	х	х	х	х	х
	6	SP-901	PERCUSSÃO	386+140	EIXO	203896,936	7297405,179	10	10,45	PROFUNDIDADE DEFINIDA						

							Та	bela 8 – F	Resumo de sona	lagens e ensaios do SH-4.						
				SON	IDAGEM							PREVISÃO D	E ENSAIOS EN	A CAMPO E LABO	RATÓRIO	
CLI	51100 11	DEFINICÃO.	7100	5574.64	200	COOR	DENADAS	PROF.	PROF. EXEC.	2.2	GRANULOMETRIA	LIMITES		DENSIDADE IN	COMPACTAÇÃO	ISC E
SH	FURU NO.	DEFINIÇÃO	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	0 1.1.1															
	1	ST-800	TRADO	2900+000	EIXO	346658,370	7207105,221	1,5	1,5	PROFUNDIDADE DEFINIDA	х	х	х	х	Х	х
	2	SM-800	MISTA	2367+200	EIXO	337296,495	7208106,612	42	42	PROFUNDIDADE DEFINIDA	*	. *	*		*	
	ST-S	M-800	TRADO					10	10	PROFUNDIDADE DEFINIDA	x*	x*	х*		x*	x*
	3	SP-800							2,19	IMPENETRÁVEL						
		SP-800A							2,19	IMPENETRÁVEL						
4	DESLOC.	SP-800B	PERCUSSÃO	1553+862	EIXO	327464,244	7218513,037	10	2,2	IMPENETRÁVEL						
	DESLUC.	SP-800C							2,19	IMPENETRÁVEL						
		SP-800D							2,19	IMPENETRÁVEL						
	4	SM-801	MISTA	1175+000	EIXO	321341,373	7219934,511	24	24	PROFUNDIDADE DEFINIDA	x*	х*	x*		x*	x*
	ST-S	M-801	TRADO					10	10	PROFUNDIDADE DEFINIDA	X -	X.	X.		X.	X.
	5	ST-801	TRADO	155+000	EIXO	304357,828	7222791,812	2	0,35	IMPENETRÁVEL	Х	х	х	х	Х	х
				SON	IDAGEM							PREVISÃO D	F FNSALOS FN	Л CAMPO E LABO	RATÓRIO	
						COOR	DENADAS	PROF.	PROF. EXEC.		GRANULOMETRIA	LIMITES		DENSIDADE IN		ISC E
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	0.1.2					LSTE (X)	NONIE (I)	(111)	(111)						NONVAL	
0001112011	1	SM-700	MISTA	595+000	EIXO	356581,362	7201452,739	43	-	CANCELADA ACESSO NEGADO						
	2	SM-701	MISTA	530+000	EIXO	355289,641	7201466,226	43	43	PROFUNDIDADE DEFINIDA						
	3	SM-702	MISTA	355+000	EIXO	352551,109	7203154,698	24	-	CANCELADA ACESSO NEGADO						
	4	SM-703	MISTA	310+000	EIXO	352047,196	7203900,400	21	21	PROFUNDIDADE DEFINIDA						
4	5	SP-700		0101000	2.7.0	002017,200	7200300,.00		2.23	IMPENETRÁVEL						
		SP-700A							2,23	IMPENETRÁVEL						
		SP-700B	PERCUSSÃO	65+000	EIXO	348530,425	7206069,201	10	2,24	IMPENETRÁVEL						
	DESLOC.	SP-700C				ĺ	<u> </u>		2,21	IMPENETRÁVEL						
		SP-700D							2,23	IMPENETRÁVEL						
				201	IDAGEM				,			PREVISÃO F	E ENSALOS EN	и самро e labo	RATÓRIO	
				301	DAGLIVI	COOR	DENADAS	PROF.	PROF. EXEC.		GRANULOMETRIA	LIMITES		DENSIDADE IN	COMPACTAÇÃO	ISC E
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	1111			<u> </u>		LSIL (A)	NORTE (1)	(111)	(111)		COINI EEIIT	ATTENDENS	10 11 010 12	3110	NORMAL	271171113713
SOBTRECTI	1	SM-600	MISTA	2262+865	EIXO	396539,659	7215059,962	35	35	PROFUNDIDADE DEFINIDA						
		M-600	TRADO	22021003	LIXO	330333,033	7213033,302	10	10	PROFUNDIDADE DEFINIDA	x*	x*	x*		x*	x*
	2	SP-600	MADO					10	5,91	IMPENETRÁVEL						
		SP-600A							5,92	IMPENETRÁVEL	- 					
		SP-600B	PERCUSSÃO	1860+000	EIXO	391069,114	7212977,508	40	5,91	IMPENETRÁVEL	- 					
	DESLOC.	SP-600C	. 200000	20001000				"	5,92	IMPENETRÁVEL	×	x	х	x	х	х
4		SP-600D							5,92	IMPENETRÁVEL	7					
	ST-9	SP-600	TRADO	1				1.5	1,5	PROFUNDIDADE DEFINIDA	 					
	3	SM-601	MISTA	1140+000	EIXO	379799,538	7207234,227	32	33	PROFUNDIDADE DEFINIDA						
		M-601	TRADO	1140,000	LIAO	373733,330	, 20, 254,227	10	10	PROFUNDIDADE DEFINIDA	x*	x*	x*		х*	x*
	4	SP-601	PERCUSSÃO	855+000	EIXO	374126,162	7206067,136	10	0,5	ROCHA APARENTE				1		
	5	SP-602	PERCUSSÃO	620+000	EIXO	374120,102	7204798,675	40	0,5	ROCHA APARENTE						
	, ,	5, 502	i Litobano	020.000	LINU	3,01,7,503	, 201, 30,073		0,5	NO CHATAILANEITE			L	1		

Tabela 9 – Resumo de sondagens e ensaios do SH-5.

				102	NDAGEM							PREVISÃO [DE ENSALOS EN	M CAMPO E LABOI	RATÓRIO	
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	COORI	DENADAS	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E
ЭП	FURU NO.	DEFINIÇAU	IIPU	ESTACA	PU3.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇAU	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	0 1.3.2															
	1	SP-500							3,35	IMPENETRÁVEL						
		SP-500A							3,35	IMPENETRÁVEL						
	DESLOC.	SP-500B	PERCUSSÃO	2920+000	EIXO	443937,645	7189829,689	30	3,36	IMPENETRÁVEL	*	v*	V*	V*	v*	v*
	DESLOC.	SP-500C							3,37	IMPENETRÁVEL	x	*		·	X	*
5		SP-500D							3,37	IMPENETRÁVEL						
	ST-S	SP-500	TRADO					10	10	PROFUNDIDADE DEFINIDA						
	2	SP-501	PERCUSSÃO	1752+090	EIXO	423352,976	7192152,011	10	10,45	PROFUNDIDADE DEFINIDA					·	
	3	SP-502	PERCUSSÃO	35+000	EIXO	404852,720	7212239,648	30	13,23	IMPENETRÁVEL	*	v*	v*		v*	v*
	ST-S	SP-502	TRADO				7212233,040	10	10	PROFUNDIDADE DEFINIDA	X ·	X .	, x ·		χ.	Χ.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 10 – Resumo de sondagens e ensaios do SH-5, 6 e 7.

				SON	IDAGEM			gens e ensulos do 311-3, 0 e 7.		PREVISÃO I	DE ENSAIOS EN	M CAMPO E LABOR	ATÓRIO			
		_				COOR	DENADAS	PROF.	PROF. EXEC.	~	GRANULOMETRIA	LIMITES		DENSIDADE IN		ISC E
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	IO 1.4.1						(1)	()	(***)							•
_	1	SM-400	MISTA	4662+449	EIXO	510216,928	7177502,061	54	54	PROFUNDIDADE DEFINIDA	*	*	*		Ψ.	
7	ST-S	M-400	TRADO					10	10	PROFUNDIDADE DEFINIDA	x*	x*	х*		x*	x*
	2	SM-401	MISTA	3500+000	EIXO	494798,727	7174663,252	38	-							
	3	SM-402	MISTA	3460+000	EIXO	494263,713	7175258,028	30	-	CANCELADAS. GEOFÍSICA - ÁREA 6						
	4	SM-403	MISTA	3422+610	EIXO	493763,539	7175813,928	42	-							
	5	SM-404	MISTA	3310+000	EIXO	493089,862	7174399,496	39	-							
	6	SM-405	MISTA	3260+920	EIXO	492520,987	7173679,059	36	-	CANCELADAS. GEOFÍSICA - ÁREA 7						
	7	SM-406	MISTA	3237+656	EIXO	492106,892	7173503,356	30	-							
	8	SM-407	MISTA	3211+180	EIXO	491690,798	7173815,652	54	54	PROFUNDIDADE DEFINIDA						
	9	SM-408	MISTA	3175+000	EIXO	491176,847	7174325,015	40	-	CANCELADA. GEOFÍSICA - ÁREA 8						
		SP-408	PERCUSSÃO	3170+500	EIXO	491106,000	7174394,000	15	13,45	IMPENETRÁVEL						
	10	SM-409	MISTA	3149+547	EIXO	490865,792	7174723,553	31	31	PROFUNDIDADE DEFINIDA						
	11	SM-410	MISTA	3100+000	EIXO	490308,430	7175541,659	46	-	CANCELADA. GEOFÍSICA - ÁREA 9						
	12	SM-411	MISTA	3010+000	EIXO	488796,786	7176318,369	53	53	PROFUNDIDADE DEFINIDA						
	13	SM-412	MISTA	2950+000	EIXO	487647,734	7176664,440	24	24	PROFUNDIDADE DEFINIDA						
6	14	SP-400							2,30	IMPENETRÁVEL						
		SP-400A							2,31	IMPENETRÁVEL						
	DESLOC.	SP-400B	PERCUSSÃO	2865+000	EIXO	486021,460	7177159,263	40	2,32	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*
	DESECC.	SP-400C							2,31	IMPENETRÁVEL	^	^	^	^	^	,
		SP-400D							231	IMPENETRÁVEL	_					
	ST-S	SP-400	TRADO					1,5	1,5	PROFUNDIDADE DEFINIDA						
	15	SP-401	PERCUSSÃO	1800+000	EIXO	471958,572	7191265,683	10	5,07	IMPENETRÁVEL						
	16	SP-402							3,05	IMPENETRÁVEL	_					
		SP-402A	~						3,05	IMPENETRÁVEL	_					
	DESLOC.	SP-402B	PERCUSSÃO	1625+000	EIXO	469980,894	7193639,162	40	3,05	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*
		SP-402C							3,06	IMPENETRÁVEL	_					
		SP-402D		ļ					3,05	IMPENETRÁVEL	_					
		SP-402	TRADO					10	10	PROFUNDIDADE DEFINIDA			1			
	17	SM-413	MISTA	1050+000	EIXO	462084,709	7197824,114	28	-	CANCELADA ACESSO NEGADO			1			
	18	SM-414	MISTA	995+000	EIXO	461027,564	7198128,160	24	24	PROFUNDIDADE DEFINIDA						
5	19	SP-403	PERCUSSÃO	266+000	EIXO	448489,567	7195089,239	30	-	CANCELADA ACESSO NEGADO						

Tabela 11 – Resumo de sondagens e ensaios do SH-5, 6 e 7 (continuação).

				SO	NDAGEM				9			PREVISÃO D	DE ENSAIOS EN	Л CAMPO E LABOR	RATÓRIO	
CII	FUDO N-	DEFINIÇÃO	TIDO	FCTACA	DOC	COORDI	ENADAS	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E
SH	FURO No.	DEFINIÇAU	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇAU	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	0 1.4.2															
	1	SP-300	PERCUSSÃO	6365+000	EIXO	626267,496	7167431,037	10	10,07	PROFUNDIDADE DEFINIDA						
	2	ST-300	TRADO	6140+000	EIXO	624288,293	7170200,179	1,5	0,7	IMPENETRÁVEL	х	х	х	х	Х	х
	3	SP-301							3,10	IMPENETRÁVEL						
		SP-301A							3,09	IMPENETRÁVEL						
	DESLOC.	SP-301B	PERCUSSÃO	5870+000	EIXO	620031,102	7173250,498	40	3,09	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*
	DESECC.	SP-301C							3,08	IMPENETRÁVEL	_					
		SP-301D							3,09	IMPENETRÁVEL						
	ST-S	P-301	TRADO					1,5	0,7	PROFUNDIDADE DEFINIDA	х	х	х	х	Х	х
	4	SM-300	MISTA	5048+202	EIXO	605629,257	7175087,032	46	46,68	PROFUNDIDADE DEFINIDA		x*	x*		x*	x*
	ST-S	M-300	TRADO					10	10	PROFUNDIDADE DEFINIDA	^	^	^		^	^
	5	SM-301	MISTA	4770+000	EIXO	601232,906	7177601,292	32	-	CANCELADA ACESSO NEGADO						
	6	SM-302	MISTA	4740+000	EIXO	600853,842	7178066,384	54	54	PROFUNDIDADE DEFINIDA						
7	7	ST-301	TRADO	4385+000	EIXO	594824,289	7178084,749	1,5	0,75	IMPENETRÁVEL	_					
	8	SP-302							3,21	IMPENETRÁVEL	_ x	×	x	,	X	×
	DESLOC.	SP-302A	PERCUSSÃO	2565+000	EIXO	562627,455	7175581,905	10	3,2	IMPENETRÁVEL	^	^	_ ^	^	Α	^
	<i>D</i> 2320 C.	SP-302B							3,2	IMPENETRÁVEL						
	9	SM-303	MISTA	1965+000	EIXO	554208,759	7172431,541	57	57	PROFUNDIDADE DEFINIDA	x*	x*	x*		x*	x*
	ST-S	M-303	TRADO					10	10	PROFUNDIDADE DEFINIDA	^	^	^			,
	10	SP-303							4,10	IMPENETRÁVEL	_					
		SP-303A							4,09	IMPENETRÁVEL	_					
	DESLOC.	SP-303B	PERCUSSÃO	740+000	EIXO	533530,042	7174735,674	40	4,10	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*
	DESEC C.	SP-303C							4,09	IMPENETRÁVEL	^	^	_ ^		Α	^
		SP-303D							4,07	IMPENETRÁVEL	4					
	ST-S	SP-303	TRADO					1,5	1,5	PROFUNDIDADE DEFINIDA						
	11	ST-302	TRADO	100+000	EIXO	522360,753	7175323,616	1,5	0,9	IMPENETRÁVEL	Х	х	х	х	X	х

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 12 – Resumo de sondagens e ensaios do SH-8.

				SONDA	AGEM					no de sondagens e ensalos do 511-8		PREVISÃO [DE ENSAIOS EM	CAMPO E LABORAT	ÓRIO	
SH	FURO No.	DEFINIÇÃO	TIPO	ESTACA	POS.	COORD	ENADAS	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E
ЗП	FURU NO.	DEFINIÇAU	IIPU	ESTACA	PU3.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇAU	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECHO	D 1.5															
	1	SP-200	PERCUSSÃO	4180+000	EIXO	691720,569	7169380,013	15	15,45	PROFUNDIDADE DEFINIDA	x*	x*	х*	x*	x*	x*
	ST-S	P-200	TRADO					10	10	PROFUNDIDADE DEFINIDA	X	X	X	X	Χ.	X
	2	SP-201	PERCUSSÃO	3977+420	EIXO	688901 229	7167233,015	10	4,07	IMPENETRÁVEL						
	DESLOC.	SP-201A	PERCUSSAU	3977+420	LIAU	080901,229	7107233,013	10	4,1	IMPENETRÁVEL						
	3	ST-200	TRADO	3520+000	EIXO	685908,210	7160601,628	1,5	1,5	PROFUNDIDADE DEFINIDA	Х	х	х	х	Х	х
	4	SP-202	PERCUSSÃO	3370+000	EIXO	685791,310	7158065,319	40	7,1	IMPENETRÁVEL	v*	x*	х*	x*	x*	x*
	ST-S	P-202	TRADO					1,5	1,5	PROFUNDIDADE DEFINIDA	^	^		^	X	^
8	5	SP-203	PERCUSSÃO	2425+000	EIXO	668859,967	7152572,580	40	20,17	IMPENETRÁVEL	x*	x*	х*	x*	x*	x*
	ST-S	P-203	TRADO					1,5	1,5	PROFUNDIDADE DEFINIDA	^	^	^	^	^	^
	6	SP-204	PERCUSSÃO	1827+930	EIXO	657166,794	7154694,012	21	18,04	IMPENETRÁVEL	x*	x*	х*	x*	x*	x*
	ST-S	P-204	TRADO					10	10	PROFUNDIDADE DEFINIDA	^	^	^	^	^	^
	7	SP-205	PERCUSSÃO	1395+000	EIXO	651090,028	7160521,070	40	13,45	IMPENETRÁVEL						
	8	SP-206	PERCUSSÃO	755+000	EIXO	639775,993	7163272,007	10	10,05	PROFUNDIDADE DEFINIDA						
	9	SM-200	MISTA	225+000	EIXO	631338,269	7166699,004	54	56	PROFUNDIDADE DEFINIDA	v*	x*	х*		x*	x*
	ST-SI	VI-200	TRADO					10	10	PROFUNDIDADE DEFINIDA	^	^	^		^	^

							Ī	abela	13 – Resumo	de sondagens e ensaios do SH-9 e	10.						
				SONDA	AGEM						PREVISÃO DE ENSAIOS EM CAMPO E LABORATÓRIO						
611	51150 11	5551111030		507101	200	COOR	DENADAS	PROF.	PROF. EXEC.	2.2	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E	
SH	FURU No.	DEFINIÇÃO	TIPO	ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO	
SUBTRECH	O 1.6																
	1	ST-101	TRADO	0+000	EIXO	693307,103	7170523,124	1,5	1,5	PROFUNDIDADE DEFINIDA	х	х	х	х	Х	х	
	2	SP-103	PERCUSSÃO	225+000	EIXO	697507,618	7169484,498	10	12,45	IMPENETRÁVEL							
	3	SM-121	MISTA	430+000	EIXO	701061,392	7168090,733	27	27,45	PROFUNDIDADE DEFINIDA							
	4	SM-120	MISTA	470+000	EIXO	701850,347	7168016,184	38	38	PROFUNDIDADE DEFINIDA							
9	5	SM-119	MISTA	505+000	EIXO	702515,753	7167798,849	24	24	PROFUNDIDADE DEFINIDA							
	6	SM-118	MISTA	710+000	EIXO	705454,802	7167087,863	22	22	PROFUNDIDADE DEFINIDA							
	7	SM-117	MISTA	770+000	EIXO	706409,348	7167796,100	40	40	PROFUNDIDADE DEFINIDA							
	8	SM-116	MISTA	825+000	EIXO	707472,959	7168027,061	56	-	CANCELADA ACESSO NEGADO							
	9	SM-115	MISTA	880+000	EIXO	708516,140	7167722,222	49	-	CANCELADA CEGEÍCICA ÁDEA E							
	10	SM-114	MISTA	915+000	EIXO	709214,895	7167680,498	31	-	CANCELADA. GEOFÍSICA - ÁREA 5							
	11	SM-113	MISTA	107+230	EIXO	710898,665	7167161,600	24	-								
	12	SM-112	MISTA	1032+280	EIXO	711347,415	7167238,609	25	-	CANCELADA. GEOFÍSICA - ÁREA 4							
	13	SM-111	MISTA	1070+000	EIXO	712135,889	7167373,917	26	-								
	14	SM-110	MISTA	1165+000	EIXO	71395,044	7167835,664	47	-								
	15	SM-109	MISTA	1186+130	EIXO	714278,921	7168101,577	37	-	CANCELADA. GEOFÍSICA - ÁREA 3							
	16	SM-108	MISTA	1223+000	EIXO	714934,354	7168345,456	40	-								
	17	SM-107	MISTA	1250+000	EIXO	715363,818	7168025,661	37	-								
	18	SP-102	PERCUSSÃO	1441+610	EIXO	718323,155	7166442,250	10	-	CANCELADA ACESSO NEGADO							
10	19	SM-106	MISTA	1736+000	EIXO	722263,226	7166771,680	40	-	CANCELADA. GEOFÍSICA - ÁREA 2							
	20	SM-105	MISTA	1760+000	EIXO	722529,922	7167170,770	32	-	CANCELADA. GEOFISICA - AREA 2						1	
	21	SM-104	MISTA	2205+000	EIXO	727706,654	7166749,155	26	-	CANCELADA. GEOFÍSICA - ÁREA 1							
	22	SM-103	MISTA	2239+000	EIXO	728225,921	7166312,553	50	50	PROFUNDIDADE DEFINIDA							
	23	SM-102	MISTA	2240+000	EIXO	728244,125	7166304,269	57	59	PROFUNDIDADE DEFINIDA							
	24	SM-101	MISTA	2650+000	EIXO		7171876,576	70	-	CANCELADA ACESSO NEGADO						1	
	25	SP-101	PERCUSSÃO	2895+000	EIXO		7172794,412	40	8,07	IMPENETRÁVEL							
	26	SM-100	MISTA	3105+000	EIXO	731274,493	7170181,406	53	49	PROFUNDIDADE DEFINIDA	x*	x*	x*	x*	x*	x*	
	ST-S	M-100	TRADO					10	10	PROFUNDIDADE DEFINIDA	X	^	^	^	, x	_ ^	
	27	SP-100	PERCUSSÃO	3180+000	EIXO		7171480,346	10	-	CANCELADA ACESSO NEGADO							
	28	ST-100	TRADO	3670+000	EIXO	740291,575	7170632,534	1,5	0,8	IMPENETRÁVEL	х	х	х	х	X	х	
				SONDA	AGEM							PREVISÃO	DE ENSAIOS EM	CAMPO E LABORAT	TÓRIO		
						COORI	DENADAS	PROF.	PROF. EXEC.	~	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E	
SH	FURO No.	DEFINIÇÃO	TIPO	TIPO ESTACA	POS.	ESTE (X)	NORTE (Y)	(m)	(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO	
SUBTRECH	0 1.7					LSTE (K)	NORTE (I)	(111)	(111)					51.0	NONWIAL		
	1	SP-01	PERCUSSÃO	3+757	EIXO	739181 466	7170095,451	40	17,1	IMPENETRÁVEL		T	T				
10		SP-01	TRADO	3.737	LINO	733131,400	, 1, 0033, 431	1,5	1,5	PROFUNDIDADE DEFINIDA	x*	x*	x*	x*	x*	x*	
	2	ST-01	TRADO	45+000	EIXO	739008.743	7170724,798		3	PROFUNDIDADE DEFINIDA	х	x	х	х	X	х	
		3101	IIIADO	+J1000	LIAU	733000,743	1 = 1 0 1 2 = , 1 3 0			I NOI UNDIDADE DEI INIDA	^	_ ^	_ ^		^	^	

Tabela 14 – Resumo de sondagens e ensaios do SH-11.

	SONDAGEM									esumo de sondagens e ensalos do 3n-11.		PREVISÃO I	DE ENSAIOS EM	I CAMPO E LABOR	ATÓRIO	
SH	FURO No.	DEFINIÇÃO	TIPO		POS.	COORE ESTE (X)	DENADAS NORTE (Y)	PROF.	PROF. EXEC.	PARALISAÇÃO	GRANULOMETRIA COMPLETA	LIMITES ATTERBERG	UMIDADE NATURAL	DENSIDADE IN SITU		ISC E EXPANSÃO
SUBTRECH								COMITEIA	ATTENDENG	INATOTAL	3110	NOMINAL	LAI ANSAO			
	1	SM-1000	MISTA	MISTA 3935+000 EIXO		256452,778	7231530,226	46	22,20	RQD>90% EM 5m CONSECUTIVOS	x*	x*	x*		x*	x*
	ST-SM-1000		TRADO					10	10,00	PROFUNDIDADE DEFINIDA	х.		x ·		X.	X ·
	2	SP-1000	PERCUSSÃO	3310+000	EIXO	247485,360	7225379,042	10	-	CANCELADA ACESSO NEGADO						
	3	SM-1001	MISTA	2060+000	EIXO	227589,942	7223964,091	25	18,45	PARALISADO POR INTERFERÊNCIA DO PROPRIETÁRIO	x*	x*	x*		x*	x*
	ST-SN	1-1001	TRADO					10	10,00	PROFUNDIDADE DEFINIDA	х.	X.	х.		X.	х.
	4	SM-1002	MISTA	925+000	EIXO	208181,837	7221148,175	22	22,17	PROFUNDIDADE DEFINIDA	x*	x*	x*		x*	x*
11	ST-SN	1-1002	TRADO					10	10,00	PROFUNDIDADE DEFINIDA	Х.	Χ.	Χ.		Χ.	X ·
11	5	SP-1001	PERCUSSÃO	815+000	EIXO	206220,917	7220257,236	40	11,96	IMPENETRÁVEL						
	6	SM-1003	MISTA	745+000	EIXO	204887,865	7219965,417	40	11,80	RQD>90% EM 5m CONSECUTIVOS						
	7	SP-1002	PERCUSSÃO	660+000	EIXO	204525,273	7218489,902	40	16,45	IMPENETRÁVEL	x*	x*	x*		x*	x*
	ST-SP-1002		TRADO					5,8	5,80	PROFUNDIDADE DEFINIDA	Х.	Χ.	x ·		Х.	х.
	8	SM-1004	MISTA	315+000	EIXO	202409,953	7213021,131	55	28,70	RQD>90% EM 5m CONSECUTIVOS						
	9	SM-1005	MISTA	160+000	EIXO	200304,646	7210944,055	44	16,70	RQD>90% EM 5m CONSECUTIVOS						
	10	SM-1006	MISTA	140+000	EIXO	199909,526	7211006,344	46	12,60	RQD>90% EM 5m CONSECUTIVOS						
				SOND	AGEM						PREVISÃO DE ENSAIOS EM CAMPO E LABORATÓRIO					
	51120.11	255111030	7120	507101	200	COORI	COORDENADAS PROF. ESTE (X) NORTE (Y) (m)		PROF. EXEC.	5.5.00.000	GRANULOMETRIA	LIMITES	UMIDADE	DENSIDADE IN	COMPACTAÇÃO	ISC E
SH	FURO No.	DEFINIÇÃO	O TIPO	ESTACA	POS.	ESTE (X)			(m)	PARALISAÇÃO	COMPLETA	ATTERBERG	NATURAL	SITU	NORMAL	EXPANSÃO
SUBTRECH	O 2.2															
	1	SP-1100	PERCUSSÃO	2535+000	EIXO	789895,010	7201007 (20	40	5,94	IMPENETRÁVEL			1	T		
	DESLOC.	SP-1100A	P-1100A		UU EIXU	789895,010	0 7201807,639	40	14,75	IMPENETRÁVEL	x*	x*	x*	x*	x*	x*
	ST-SF	ST-SP-1100		1,		1,5	1,50	PROFUNDIDADE DEFINIDA								
	2	2 SM-1100		2100+000	EIXO	785002,320	7195432,911	40	27,80	RQD>90% EM 5m CONSECUTIVOS	x*	x*	x*		x*	x*
	ST-SN	1-1100	TRADO					10	10,00	PROFUNDIDADE DEFINIDA	Χ.	X.	χ.		Χ.	х.
11	3	SP-1101	PERCUSSÃO	2005+000	EIXO	783810,507	7194300,267	10	10,45	PROFUNDIDADE DEFINIDA						
	4	4 SP-1102		1642+181	EIXO	779547,720	7189582,838	10	8,45	IMPENETRÁVEL	x*	x*	x*		x*	x*
	ST-SF	ST-SP-1102						10	10,00	PROFUNDIDADE DEFINIDA	Х.	X.	x ·		Χ.	х.
	5	5 SM-1101		650+000	EIXO	763242,152	7179532,715	15	15,40	PROFUNDIDADE DEFINIDA	x*	x*	x*	x*	*	x*
	ST-SN	ST-SM-1101						10	10,00	PROFUNDIDADE DEFINIDA	X.	Χ.	x ·		X.	х.
	6	SP-1103	PERCUSSÃO	78+134	EIXO	754579,141	7176599,740	10	-	CANCELADA ACESSO NEGADO						

8.1 SEGMENTO HOMOGÊNEO 1 – MARACAJU - DOURADOS, MS

Este segmento se encontra sob rochas basálticas da Formação Serra Geral e relevo com terrenos aplainados com colinas suaves e topos pouco largos, vales abertos medianamente espaçados entre si.

Neste trecho foram executadas 2 sondagens da série 900, sendo a SP-910 e a SP-911. Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 15 – Dados das sondagens executadas no SH-1.

	SONDAGEM											
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO					
эн	FUNU NU.	DEFINIÇAU	IIPO	(m)	(m)	PARALISAÇAU						
	1	SP-910		10	5,93	IMPENETRÁVEL						
	DECLOC	SP-910A	PERCUSSÃO		3,97	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO					
4	DESLOC.	SP-910B			4,87	IMPENETRÁVEL	ATEMIO					
1	2	SP-911		40	4,96	IMPENETRÁVEL	~					
	DECLOC	SP-911A	PERCUSSÃO		4,34	IMPENETRÁVEL	FUNDAÇÃO DE PONTE					
	DESLOC.	SP-911B			4,93	IMPENETRÁVEL	TONIE					

Fonte: Elaborado pelo Consórcio TPF-SENER.

Ambas as sondagens foram paralisadas devido ao impenetrável ao equipamento de percussão quando atingido 5 m de profundidade aproximadamente, sendo feito em ambos os furos, o deslocamento e execução de mais dois furos em cada ponto para garantir que não foi encontrado um matacão nos locais.

Nas sondagens SP-910, 910A e 910B foram encontrados solos residuais de basalto constituídos até aproximadamente 5 m com argilas siltosa vermelha escura com valores de Nspt no primeiro metro em torno de 1 golpe, considerado um solo muito mole, e aumentando gradativamente de 7 a 41 golpes, portanto, passando de uma argila média a dura.

Já as sondagens SP-911, 911A e 911B, também executadas em solos residual de basalto com argila siltosa e arenosa vermelha nos últimos metros da SP-911A, com variações de argila mole com 1 a 3 golpes nos dois primeiros metros, chegando à argila dura com Nspt igual a 50 golpes no último metro.

O nível de água foi encontrado somente nas sondagens do conjunto SP-910 estando bem superficial com a profundidade média em torno de 0,91 m.

A seguir é possível visualizar nas figuras os locais e solos encontrados das sondagens executadas.

Figura 11 – Local de execução da SP-910 e amostra de solo obtida

Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 12 – Local de execução da SP-911 e amostra de solo obtida.

8.2 SEGMENTO HOMOGÊNEO 2 – DOURADOS MS – GUAÍRA, PR

Igualmente ao segmento 1, este também se encontra sob rochas basálticas da Formação Serra Geral e relevo com terrenos aplainados com colinas suaves e topos pouco largos, vales abertos medianamente espaçados entre si. Próximo ao rio Paraná, o relevo se modifica para as Planícies Fluviais, características encontradas nas margens das principais drenagens da região de estudo

Neste trecho foram executadas 6 sondagens da série 900, sendo uma sondagem a trado (ST-902), duas sondagens mistas (SM-903 e 904) e 3 sondagens a percussão (SP-906, 908 e 909). A SP-907 não foi possível ser executada devido à falta de acesso em função da área estar alagada.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

SONDAGEM PROF. PROF. EXEC. **FURO No. DEFINIÇÃO** TIPO **PARALISAÇÃO OBSERVAÇÃO** SH (m) (m) SP-906 40 5,97 IMPENETRÁVEL FUNDAÇÃO SP-906A **PERCUSSÃO** 5,51 **IMPENETRÁVEL PONTE RIO** DESLOC. PARANÁ SP-906B 5,81 IMPENETRÁVEL FUNDAÇÃO SP-907 PERCUSSÃO SEM ACESSO – ÁREA TOTALMENTE ALAGADA 2 PONTE RIO PARANÁ ÁREA POTENCIAL DE SOLO MOLE 2 3 SP-908 **PERCUSSÃO** 13,45 IMPENETRÁVEL (ÁREA DE ALAGAMENTO) MISTA 30 30,45 PROFUNDIDADE DEFINIDA CORTE 4 SM-903 FUNDAÇÃO DE 5 SP-909 **PERCUSSÃO** 10 10,45 PROFUNDIDADE DEFINIDA ATERRO ANÁLISE Do 6 ST-902 **TRADO** 1,5 1,50 PROFUNDIDADE DEFINIDA **SUBLEITO** 7 SM-904 MISTA 20 20,45 PROFUNDIDADE DEFINIDA **CORTE**

Tabela 16 – Dados das sondagens executadas no SH-2.

Fonte: Elaborado pelo Consórcio TPF-SENER.

As sondagens executadas entre Dourados, MS e antes da região da ponte, ou seja, as sondagens SM-903 e 904 e a SP-909, atingiram a profundidade definida para atendimento ao projeto, inclusive nas sondagens mistas não foram identificadas o topo rochoso chegando a mais de 30 m com a sondagem executada em solo.

Na SM-904, dentro do município de Caarapó - MS a sondagem foi executada até 20,45 m sendo encontrado uma argila arenosa vermelha até os 12 m de profundidade considerada de muito mole a mole com Nspt variando de 1 a 5 crescendo com a profundidade, e abaixo dessa camada uma argila siltosa vermelha arroxeada com Nspt entre 8 e 21 golpes. O nível d'água nessa sondagem foi encontrado a 18,47 m de profundidade.

Figura 13 – Local de execução da SM-904 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A sondagem SP-909 executada já no município de Iguatemi - MS atingiu a profundidade definida de 10 m sendo encontrado uma areia fina argilosa vermelha e amarela com Nspt variando de 1 a 7 golpes até 7 m de profundidade, considerada como uma areia fofa a pouco compacta, e logo após, até o final do furo, encontrada uma argila siltosa vermelha média a dura com Nspt entre 9 e 22 golpes.

O NA foi medido a 8 m de profundidade.

Figura 14 – Local de execução da SP-909 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Já no município de Novo Mundo - MS a SM-903 foi executada com 30,45 m com pacotes espessos de areia e argila, estando até 9 m aproximadamente uma areia fina siltosa com Nspt entre 2 (fofa) a 6 golpes (pouco compacta), passando para medianamente compacta (8 golpes) a pouco mais dos 13 m.

Logo após foi encontrada uma argila arenosa marrom avermelhada rija, com Nspt variando de 10 a 19 golpes até os18 m de profundidade, entrando novamente em uma areia fina argilosa até próxima de 22 m, com Nspt entre 15 e 26 (medianamente compacta a compacta). Dos 22 m até o final do furo, voltou-se a encontrar uma argila arenosa vermelha dura, obtendo golpes entre 31 e 48. O lençol freático medido na sondagem foi obtido aos 14,80 m de profundidade.

Figura 15 – Local de execução da SM-903 e amostras de solo obtidas.

As sondagens próximas ao Rio Paraná sendo a SP-906, 907 e 908 ainda no município de Novo Mundo – MS chegaram ao impenetrável ao equipamento de percussão quando atingido na média dos deslocamentos da SP-906 uma profundidade de aproximadamente 5,80 m, e 13,45 m na SP-908. A SP-907 não foi executada devido à falta de acesso, estando em uma grande área alagada impossibilitando, inclusive, o deslocamento do furo.

Foi obtida na SP-908 uma argila siltosa marrom avermelhada (solo residual) em toda a profundidade, considerada mole (2 a 5 golpes) nos três primeiros metros da sondagem, aumentando gradativamente com a profundidade, sendo obtido de 6 a 27 golpes até o impenetrável.

Já as sondagens SP-906, 906A e B, atingiram uma profundidade de 5,97 m, 5,51 m e 5,81 m respectivamente. O material encontrado se trata de uma camada de aterro composta por uma argila siltosa de mole a média até 2,50 m com Nspt entre 5 e 10 golpes, sotoposta à um solo aluvionar de matriz arenosa (areia argilosa) fina, cinza com o Nspt variando entre 3 e 50 golpes (areia fofa a compacta).

O NA das respectivas sondagens foram encontrados próximo a superfície sendo a 50 cm na SP-906 e 1,80 m na SP-908 respectivamente.

Figura 16 – Local de execução da SP-908 e amostra de solo obtida.

Figura 17 – Local de execução da SP-906 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

8.3 SEGMENTO HOMOGÊNEO 3 – GUAÍRA – IBEMA, PR

Partindo das Planícies Fluviais encontradas nas margens do rio Paraná em Guaíra - PR, passa-se pelos Planaltos Campo Mourão e Cascavel Baixo Iguaçu até Ibema — PR com formas de elevo dominante variando entre suave ondulado e ondulado, e por dissecação moderada, com topos alongados e aplainados respectivamente. Esse segmento também está assente sobre rochas basálticas da Formação Serra Geral.

Neste trecho foram executadas 11 sondagens da série 900, sendo duas sondagens a trado (ST-900 e 901), três sondagens mistas (SM-900, 901 e 902) e seis sondagens a percussão (SP-900, 901, 902, 903, 904 e 905). Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 17 – Dados das sondagens executadas no SH-3.

					SONDAGEM	executudus 110 311-3.		
SH	FURO	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO	
эп	No.	DEFIINIÇAU	IIFO	(m)	(m)	PARALISAÇAU	OBSERVAÇÃO	
	1	SM-900	MISTA	18	18,45	PROFUNDIDADE DEFINIDA	CORTE	
	2	SP-900	PERCUSSÃO	-	23,53	IMPENETRÁVEL	FUNDAÇÃO	
	3	SM-901	MISTA	43	32,12	RQD > 90% em 5 m	CORTE	
	4	ST-900	TRADO	1,5	2	PROFUNDIDADE DEFINIDA	ANÁLISE DO SUBLEITO	
	5	ST-901	TRADO	1,5	1,5	PROFUNDIDADE DEFINIDA	ANÁLISE DO SUBLEITO	
	6	SP-901	PERCUSSÃO	10	10,45	PROFUNDIDADE DEFINIDA	FUNDAÇÃO DE ATERRO	
	7	SM-902	MISTA	-	33,45	IMPENETRÁVEL	CORTE	
3	8	SP-902	PERCUSSÃO	-	19,45	IMPENETRÁVEL	ÁREA POTENCIAL DE SOLO MOLE (ÁREA DE ALAGAMENTO)	
	9	SP-903	PERCUSSÃO	-	10,45	IMPENETRÁVEL	ÁREA POTENCIAL DE SOLO MOLE (ÁREA DE ALAGAMENTO)	
	10	SP-904	DED CLICC TO	-	3,64	IMPENETRÁVEL	ÁREA POTENCIAL DE SOLO MOLE	
	DESLOC.	SP-904A	SP-904A PERCUSSÃO		2,95	IMPENETRÁVEL	(ÁREA DE	
	DESLUC.	SP-904B			5,50	IMPENETRÁVEL	ALAGAMENTO)	
	11	SP-905		40	6,23	IMPENETRÁVEL	FUNDAÇÃO PONTE	
	DESLOC	SP-905A	PERCUSSÃO		5,49	IMPENETRÁVEL	RIO PARANÁ	
	DESLOC.	SP-905B			5,76	IMPENETRÁVEL	NO LANANA	

Fonte: Elaborado pelo Consórcio TPF-SENER.

Na margem do rio Paraná, do lado de Guaíra — PR, as sondagens SP-905, 905A e B, atingiram uma profundidade de 6,20 m, 5,49 m e 5,76 m respectivamente. O material encontrado se trata de uma camada de aterro composta por uma areia pouco argilosa fofa até 2,50 m com Nspt entre 1 e 4 golpes, sobreposta à um solo aluvionar de argila siltosa com o Nspt variando entre 1 golpe nos dois primeiros

metros dessa camada, chegando a 50 golpes e impenetrável nos últimos centímetros. A profundidade do lençol freático obtido na sondagem, foi medido em torno de 1,70 m.

Figura 18 – Local de execução da SP-905 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A SP-904, também com deslocamento em A e B, foi encontrado até 1,50 m de profundidade um aterro de argila siltosa muito mole marrom escura com Nspt entre 1 e 2 golpes. Abaixo dessa camada,

encontrou-se um solo aluvionar composto também por uma argila siltosa cinza e marrom escura com Nspt variando entre 1 golpe no primeiro metro e atingindo até 50 golpes nos centímetros finais antes do impenetrável ao equipamento de percussão. O nível de água medido nas sondagens foi em média de 0,40 m da superfície do terreno.

Figura 19 – Local de execução da SP-904 e amostras de solo obtidas.

Mais afastado da margem do rio, a SP-903 foi executada até 10,45 m de profundidade encontrando uma argila siltosa marrom escura, passando de mole no primeiro metro, a dura nos metros finais com Nspt máximo de 24 golpes.

O nível de água nessa sondagem foi encontrado a 14,8 m.

Figura 20 – Local de execução da SP-903 e amostra de solo obtida.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Já no município de Terra Roxa – PR a SP-902 atingiu a profundidade de 19,45 m sendo composta por solos residuais com uma camada de 9,50 m de argila siltosa marrom avermelhada mole até os 8 m, com Nspt entre 2 e 5, chegando a 6 golpes (argila média) nos metros finais da camada. Abaixo desta até o final do furo, encontra-se um silte arenoso vermelho pouco compacto a compacto com o aumento gradativo do número de golpes conforme a profundidade (7 a 28 golpes).

O nível do lençol freático foi encontrado a 16,02 m de profundidade.

Figura 21 – Local de execução da SP-902 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Dentro do mesmo município, foi executada também a SM-902 onde foi atingido a profundidade de projeto (33 m) e não foi encontrado o topo rochoso, sendo encontrado uma argila siltosa vermelha considerada de muito mole a mole até cinco metros de profundidade, e chegando até 16,70 m no mesmo material com Nspt entre 6 e 9 golpes (argila média). Logo abaixo encontra-se uma camada de silte arenoso vermelho medianamente compacto com Nspt entre 9 e 12 golpes com aproximadamente

5 m de espessura (até 21,90 m). Abaixo desta camada até o final do furo, foi obtido um silte argiloso marrom com Nspt aumentando com a profundidade de 11 golpes (rija) a 31 golpes (dura).

Figura 22 – Local de execução da SM-902 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Em Nova Santa Rosa executou-se a sondagem SP-901 a qual atingiu a profundidade especificada para o projeto (10,45 m), sendo o material encontrado em toda a extensão uma argila siltosa marrom

avermelhada considerada mole com Nspt entre 2 e 5 golpes até 4 m de profundidade e passando para média a rija com Nspt entre 6 e 12 golpes. Nessa sondagem não foi encontrada o nível estático do lençol freático.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Já no município de Cascavel – PR, a sondagem SM-901 foi executada até a profundidade de 32,12 m onde atingiu o impenetrável ao equipamento de percussão. Até 7 m de profundidade, foi encontrada uma argila arenosa vermelha escura com Nspt variando de 1 a 4 golpes (muito mole e mole), passando para uma argila siltosa marrom avermelhada chegando até próximo de 22 m, com Nspt variando entre 20 e 27 golpes (argila dura). Abaixo dessa camada, encontrou-se um silte arenoso variegado medianamente compacto com Nspt entre 10 e 17 golpes. Nos últimos metros, o mesmo silte foi encontrado, porém, com fragmentos de rocha (solo de alteração) com Nspt atingindo entre 39 e 43 golpes sem penetração total aos 30 cm respectivo ao ensaio.

O nível d'água nessa sondagem foi encontrada a 11,7 m de profundidade.

Figura 24 – Local de execução da SM-901 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A SP-900 executada próxima a sondagem supracitada, tem como objetivo avaliar os materiais onde será feito o triângulo de reversão. Essa sondagem chegou até o impenetrável chegando a 23,53 m, com aproximadamente 11,5 m constituído por uma argila siltosa marrom, com os três primeiros metros uma argila muito mole, com Nspt igual a 2 golpes, e indo de mole até seis metros, a média até

o final da camada. Abaixo dessa camada, encontra-se um silte arenoso marrom variando de pouco a medianamente compacto sendo obtido entre 7 e 13 golpes de Nspt.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A última sondagem desse segmento denominada SM-900 próximo ao limite de município entre Cascavel e Catanduvas - PR, foi executada atendendo a profundidade especificada com 18,45 m

totalmente em solo, sem interceptar o topo rochoso. Na sondagem foi encontrada uma argila siltosa marrom avermelhada com Nspt variando de 1 a 5 golpes até 5,45 m de profundidade. Abaixo dessa camada, com espessura em torno de três metros uma argila arenosa vermelha dura, com Nspt entre 25 e 28 golpes sendo finalizado comum silte arenoso marrom avermelhado de medianamente compacto (~12 golpes) e compacto em torno de 20 golpes.

O nível do lençol freático foi medido a 17,1 m de profundidade.

8.4 SEGMENTO HOMOGÊNEO 4 – IBEMA – GOIOXIM, PR

Ainda dentro do complexo de rochas basálticas da Formação Serra Geral, este segmento possui dissecação alta, com topos alongados e drenagens convexas com aprofundamento moderado, com vales em "V", e declividade moderada a baixa.

Neste trecho foram executadas 5 sondagens da série 800, sendo duas sondagens a trado (ST-800 e 801), 2 sondagens mistas (SM-800 e 801) e uma sondagem a percussão (SP-800), 4 sondagens da série 700 sendo duas sondagens mistas (SM-701 e 703) e uma a percussão (SP-700) e por final, 5 sondagens da série 600 com duas sondagens mistas (SM-600 e 601) e três a percussão (SP-600, 601 e 602).

Duas sondagens da série 700 (SM-700 e 703) que foram definidas com o propósito de avaliar a região de um túnel foram excluídas por falta de acesso e deslocamentos que não atenderiam o objetivo. Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 18 – Dados das sondagens executadas no SH-4.

	sondagem											
	FURO	. ~ .		PROF.	PROF. EXEC.							
SH	No.	DEFINIÇÃO	TIPO	(m)	(m)	PARALISAÇÃO	OBSERVAÇÃO					
	1	ST-800	TRADO	1,5	1,5	PROFUNDIDADE DEFINIDA	ANÁLISE DO SUBLEITO					
	2	SM-800	MISTA	42	42	PROFUNDIDADE DEFINIDA	TÚNEL					
	3	SP-800		10	2,19	IMPENETRÁVEL						
		SP-800A			2,19	IMPENETRÁVEL	. ~ .					
	DECLOC	SP-800B	PERCUSSÃO		2,20	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO					
	DESLOC.	SP-800C			2,19	IMPENETRÁVEL	ATENNO					
		SP-800D			2,19	IMPENETRÁVEL						
	4	SM-801	MISTA	24	24	PROFUNDIDADE DEFINIDA	CORTE					
	5	ST-801	TRADO	1,5	0,35	IMPENETRÁVEL	ANÁLISE DO SUBLEITO					
	6	SM-700	MISTA		DIFICULI	TÚNEL						
	7	SM-701	MISTA	43	43	PROFUNDIDADE DEFINIDA	TÚNEL					
	8	SM-702	MISTA		DIFICULI	DADE ACESSO	TÚNEL					
	9	SM-703	MISTA	21	21	PROFUNDIDADE DEFINIDA	CORTE					
	10	SP-700		10	2,23	IMPENETRÁVEL						
4	DESLOC.	SP-700A			2,23	IMPENETRÁVEL	-:					
		SP-700B	PERCUSSÃO		2,24	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO					
		SP-700C			2,21	IMPENETRÁVEL	ATEMIO					
		SP-700D			2,23	IMPENETRÁVEL						
	11	SM-600	MISTA	35	35	PROFUNDIDADE DEFINIDA	CORTE					
	12	SP-600		40	5,91	IMPENETRÁVEL						
		SP-600A			5,92	IMPENETRÁVEL						
	DECLOC	SP-600B	PERCUSSÃO		5,91	IMPENETRÁVEL	FUNDAÇÃO DE PONTE					
	DESLOC.	SP-600C			5,92	IMPENETRÁVEL						
		SP-600D			5,92	IMPENETRÁVEL						
	13	SM-601	MISTA	32	33	PROFUNDIDADE DEFINIDA	CORTE					
	14	SP-601	PERCUSSÃO	10	-	ROCHA APARENTE	FUNDAÇÃO DE ATERRO					
	15	SP-602	PERCUSSÃO	40	-	ROCHA APARENTE	FUNDAÇÃO DE VIADUTO					

No município de Guaraniaçu – PR foi executada a SP-800 onde encontrou o impenetrável ao equipamento de percussão a 2,19 m de profundidade. Foram deslocadas em quatro direções para identificação de um possível matacão, porém, todas atingiram o impenetrável na mesma profundidade, definindo o possível topo rochoso.

Nas sondagens, foi identificada até 0,80 m uma argila vermelha com a presença de matacões com Nspt entre 12 e 14 golpes, passando por uma argila vermelha com mais de 30 golpes até 1,50 m aproximadamente, e chegando ao fundo do furo com a mesma argila com alteração de rocha. Nesta sondagem não foi identificado o nível de água.

A SM-800 atendeu a profundidade definida em projeto (42 m) e foi executada em rocha em toda sua profundidade. Foi iniciada com lavagem, devido à impossibilidade de penetração do equipamento de percussão, e obtido testemunhos de basalto com uma porcentagem de recuperação em mais de 90% em toda a extensão do furo, apresentando somente nos últimos metros uma recuperação em torno de 66%. As características dos testemunhos coletados mostram uma rocha moderadamente alterada (A2) e muito coerente (C1), indo de extremamente fraturada (F5) com passagens por trechos muito fraturado (F4) a medianamente fraturada (F3) ao longo da profundidade.

O nível de água no furo foi obtido a 15 m da superfície natural do terreno.

Figura 28 – Caixa testemunho da SM-800.

Já na SM-801 foi obtido a perfuração em solo até 11,50 m de profundidade, sendo coletado até 4 m uma argila siltosa marrom, com Nspt entre 7 e 9 golpes, seguida por um silte arenoso com Nspt entre 11 e 18 golpes até 8 m, sendo o limite da percussão, e até o topo rochoso executada a perfuração por lavagem. No trecho em rocha basáltica, a recuperação foi entre 14% e 36% até 22 m de profundidade, e obtendo 100% nos 2 últimos metros. Os testemunhos mostraram uma rocha de muito alterada (A3) a moderadamente alterada (A4), extremamente fraturada (F5) e friável (C4) nos trechos de baixa recuperação, melhorando a qualidade nos metros finais. O nível do lençol freático foi medido a 12,40 m de profundidade.

Figura 29 - Caixa testemunho da SM-801.

Já no município de Novas Laranjeiras, a sondagem SP-700 obteve o mesmo comportamento da sondagem supracitada, atingindo a profundidade em torno de 2,23 m. Foram identificadas uma camada de argila vermelha até 1,50 m aproximadamente com Nspt entre 7 e 10 golpes, a argila com alteração de rocha até o fundo atingindo o impenetrável, com Nspt com mais de 30 golpes penetrando em torno de 7 centímetros.

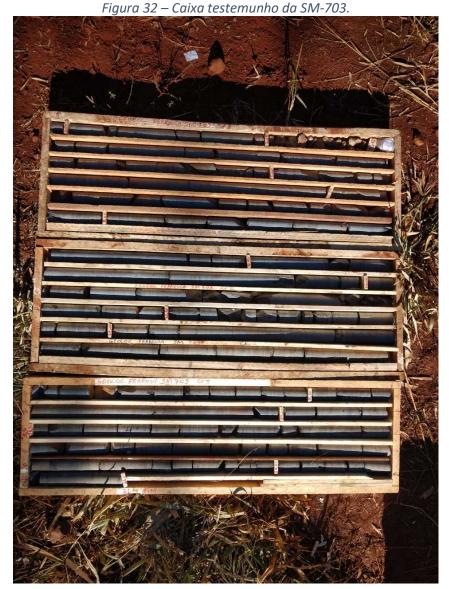
O nível do lençol freático foi identificado no contato solo/rocha, em torno de 2 m de profundidade.

EMPRESA
SENER

A SM-701 teve a sua profundidade atingida em 43 m, com apenas 1 m com alteração de rocha, a qual foi possível executar a percussão com valor igual a 33 golpes e em seguida a execução da sondagem rotativa até o final. A recuperação dos testemunhos foi no geral maior que 90%, com fraturas moderadas (A2), mostrando-se coerente em toda a profundidade (C1) e faturamento variando de pouco (F2) a extremamente fraturada (F5).

Figura 31 – Caixa testemunho da SM-701.

Fonte: Elaborado pelo Consórcio TPF-SENER.



A sondagem SM-703 foi executada praticamente em rocha, somente com 0,50 m do furo executado por lavagem, com baixa recuperação dos testemunhos até os três primeiros metros, chegando em torno de 40%, aumentando para mais de 90% nos trechos seguintes até o final do furo. As características obtidas foram idênticas a SM-701, com fraturas moderadas, faturamento variando ao longo da profundidade e totalmente coerente.

Em ambos os furos a rocha é o basalto e não foi encontrado o nível de água.

Nos municípios de Laranjeiras do Sul e Marquinhos no Paraná, as sondagens SP-602 e 601 respectivamente não foram executadas devido a identificação do topo rochoso aparente na superfície do terreno. As imagens abaixam ilustram a informação acima.

Figura 33 – Local de execução da SP-602 com rocha aparente.

Figura 34 – Local de execução da SP-601 com rocha aparente.

A SP-600 executada dentro do município de Cantagalo - PR, atingiu o impenetrável em torno de 5,90 m de profundidade, juntamente com seus deslocamentos (SP-600A, B, C e D) sendo encontrado até 4,50 m aproximadamente uma argila vermelha e amarela indo de média a dura, com o aumento gradativo do Nspt começando com 5 golpes até 12 golpes no final. Abaixo desta camada, encontrouse um solo argiloso com alteração de rocha com Nspt na média de 38 golpes com menos de 30 cm conforme padrão do ensaio até o impenetrável.

Figura 35 – Local de execução da SP-600 e amostra de solo obtida.

O lençol freático foi medido no contato solo/rocha em torno de 5,80 m de profundidade.

Na SM-601 foi executado furo a percussão até 2 m de profundidade com a obtenção de uma argila amarela e Nspt igual a 4 golpes, e em seguida entrando em rocha basáltica com recuperação de no máximo 56% até 9 m de profundidade, aumentando para maior que 90% até 27 m, sendo observado um pequeno trecho com uma redução drástica da recuperação do testemunho (22%) até 30 m, aumentando novamente até a profundidade de projeto (33 m). A rocha se apresentou com pouca alteração (A1), muita coerência (C1) e variando entre muito (F4) a extremamente fraturado (F5). No trecho em que houve a redução da recuperação, houve um aumento da alteração e redução da coerência.

Figura 36 – Caixa testemunho da SM-601.

Já na SM-600 foi obtida uma maior camada de solo, sendo até 6 m de profundidade uma argila siltosa com Nspt de 6 golpes no primeiro metro e variando entre 12 e 14 golpes até o final da camada. Abaixo dessa camada, encontrou-se um silte argiloso até 8,3 m com Nspt de 23 e 30 golpes para 13 centímetros. Os testemunhos de rocha basáltica foram coletados com a recuperação de 20% no início do topo rochoso, chegando até 82% em até 19 m de profundidade, abaixo dessa profundidade até o final do furo (35 m) a recuperação foi de 100%. O aspecto observado nos testemunhos foi de um material muito alterado (A3), pouco coerente (C3) e extremamente fraturado (F5) no trecho com menor recuperação, até moderadamente alterado (A2) com maior coerência (C1) e medianamente fraturado (F3) nos trechos de maior recuperação dos testemunhos.

Não foi identificado o lençol freático em ambas as sondagens mistas.

Figura 37 – Caixa testemunho da SM-600.

8.5 SEGMENTO HOMOGÊNEO 5 – GOIOXIM – GUARAPUAVA, PR

Já no final da Formação Serra Geral, este segmento possui dissecação baixa, topos aplainados e drenagens retilíneas e convexas com aprofundamento baixo a moderado, com vales em "U".

Neste trecho foram executadas 3 sondagens da série 500, sendo as sondagens a percussão (SP-500, 501 e 502) e uma da série 400 (SP-403), porém essa última cancelada pela não liberação do acesso à propriedade.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

SONDAGEM PROF. PROF. EXEC. **FURO** SH **DEFINIÇÃO TIPO PARALISAÇÃO OBSERVAÇÃO** No. (m) (m) 1 SP-500 30 3,35 **IMPENETRÁVEL** SP-500A 3,35 **IMPENETRÁVEL** SP-500B **PERCUSSÃO** 3,36 IMPENETRÁVEL CORTE DESLOC. SP-500C 3,37 **IMPENETRÁVEL** SP-500D 3,37 IMPENETRÁVEL PROFUNDIDADE 2 SP-501 **PERCUSSÃO** 10 10,45 FUNDAÇÃO DE ATERRO DEFINIDA SP-502 **PERCUSSÃO** 30 13,23 **IMPENETRÁVEL** CORTE 3 4 **PERCUSSÃO ACESSO NEGADO** FUNDAÇÃO DE ATERRO SP-403 30

Tabela 19 – Dados das sondagens executadas no SH-5.

Fonte: Elaborado pelo Consórcio TPF-SENER.

No município de Goioxim – PR a execução da sondagem SP-502 obteve até 0,80 m de profundidade um aterro com pedras soltas com Nspt igual a 4 golpes, sendo encontrado logo após uma argila preta indo de mole a média com a profundidade com Nspt entre 3 e 6 golpes até 4 m de profundidade. Abaixo se obteve uma argila vermelha indo de média a muito rija com a profundidade com Nspt entre 8 e 21 golpes. Abaixo de 10,50 m até o final do furo (13 m), foi encontrada uma argila marrom com Nspt entre 31 golpes e 30 golpes com a penetração de apenas 7 cm, sendo neste último, a argila com alteração de rocha alcançando o impenetrável a percussão.

O nível de água no furo foi medido a 2,50 m de profundidade.

Figura 38 – Local de execução da SP-502 e amostra de solo obtida.

No limite entre os municípios de Candói e Guarapuava — PR, foi executada a SP-501 com a profundidade especificada (10 m), sendo encontrado em toda sua extensão uma argila vermelha, sendo nos três primeiros metros de profundidade uma argila mole com Nspt entre 3 e 5 golpes. Até 9 m de profundidade a argila se torna média com Nspt aumentando gradativamente de 8 a 17 golpes, e no último metro, a argila se torna dura com Nspt igual a 19 golpes.

O nível do lençol freático foi medido em torno de 8 m de profundidade.

Figura 39 – Local de execução da SP-501 e amostra de solo obtida.

EMPRESA
SENER
SP-501
09-04-2021

Já em Guarapuava - PR, a execução da SP-500 estimada em 30 m de profundidade, alcançou o impenetrável em torno de 3,35 m, sendo feito o deslocamento do furo em quatro direções, obtendo a mesma profundidade em média de 3,36 m. Dentre as sondagens executadas, foram encontradas até 0,80 m uma argila marrom de muito mole a mole, com Nspt entre 2 e 4 golpes, e estando abaixo dessa camada, uma argila alaranjada, sendo no primeiro metro dessa camada uma argila muito mole com 2 golpes, passando para uma argila dura com alteração de rocha e Nspt de 48 golpes com 20 cm de penetração.

O lençol freático não foi encontrado nos furos executados.

Figura 40 – Local de execução da SP-500 e amostra de solo obtida.

EMPRESA
SENER
SP-500
08-04-2021

8.6 SEGMENTO HOMOGÊNEO 6 – GUARAPUAVA – PRUDENTÓPOLIS, PR

No limite da Formação Serra Geral e Formação Botucatu com os arenitos avermelhados, este segmento possui dissecação baixa, topos aplainados e drenagens retilíneas e convexas com aprofundamento baixo a moderado, com vales em "U", e próximo à divisa entre os municípios de Prudentópolis, Inácio Martins e Irati, encontra-se a Serra da Boa Esperança.

Neste trecho foram executadas as sondagens da série 400, sendo 4 sondagens a percussão (SP-400, 401, 402 e 408), e 14 sondagens mistas (SM-401 a 414).

A maioria das sondagens mistas que seriam executadas na região da Serra da Boa Esperança onde terão alguns túneis (SM-401 a 406 e 410) foram canceladas devido à dificuldade de acesso com os equipamentos, porém, serão substituídas por ensaios sísmicos, os quais não dependem de grandes equipamentos para sua execução.

A SM-413 e a SM-403 foram canceladas por não ter o acesso liberado pelos proprietários da área.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 20 – Dados das sondagens executadas no SH-6.

SONDAGEM								
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO	
				(m)	(m)			
	1	SM-401	MISTA				TÚNEL	
	2	SM-402	MISTA				TÚNEL	
	3	SM-403	MISTA		DIFICULD	DADE ACESSO.	TÚNEL	
	4	SM-404	MISTA		SUBSTITUÍDA	TÚNEL		
	5	SM-405	MISTA			TÚNEL		
	6	SM-406	MISTA			TÚNEL		
	7	SM-407	MISTA	54	54	PROFUNDIDADE DEFINIDA	TÚNEL	
	8	SM-408	MISTA	SUBSTITUÍDA PELA SP-408			TÚNEL	
	9	SM-409	MISTA	31	31	PROFUNDIDADE DEFINIDA	TÚNEL	
	10	SM-410	MISTA	SUBSTITUÍDA POR GEOFÍSICA			TÚNEL	
	11	SM-411	MISTA	53	53	PROFUNDIDADE DEFINIDA	TÚNEL	
	12	SM-412	MISTA	24	24	PROFUNDIDADE DEFINIDA	TÚNEL	
6	13	SM-413	MISTA		ACESS			
	14	SM-414	MISTA	24	24	PROFUNDIDADE DEFINIDA	TÚNEL	
	15	SP-400		40	2,30	IMPENETRÁVEL		
	DESLOC.	SP-400A			2,31	IMPENETRÁVEL	FUNDAÇÃO DE	
		SP-400B	PERCUSSÃO		2,32	IMPENETRÁVEL	PONTE	
		SP-400C			2,31	IMPENETRÁVEL		
		SP-400D			2,31	IMPENETRÁVEL		
	16	SP-401	PERCUSSÃO	10	5,07	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO	
	17	SP-402		40	3,05	IMPENETRÁVEL	FUNDAÇÃO DE	
	DESLOC.	SP-402A	PERCUSSÃO		3,05	IMPENETRÁVEL	PONTE	
		SP-402B			3,05	IMPENETRÁVEL	E CORTE	

SONDAGEM								
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO	
				(m)	(m)			
		SP-402C			3,06	IMPENETRÁVEL		
		SP-402D			3,05	IMPENETRÁVEL		
	18	SP-408	PERCUSSÃO	15	13,45	IMPENETRÁVEL	TÚNEL	

Fonte: Elaborado pelo Consórcio TPF-SENER.

A sondagem SP- 402, executada no município de Guarapuava – PR, alcançou o impenetrável em torno de 3,05 m de profundidade, juntamente com seus deslocamentos A, B, C e D, encontrado até 0,10 m uma camada de cascalho e logo abaixo até dois metros de profundidade um silte com veios variegados com Nspt entre 8 e 41 golpes conforme a profundidade. Logo após, no último metro do furo, o mesmo silte é encontrado com alteração de rocha, chegando a obter 30 golpes com penetração máxima de 5 cm.

Figura 41 – Local de execução da SP-402 e amostra de solo obtida.

No mesmo município, executada a SP-401 onde também foi atingido o impenetrável antes da profundidade definida em projeto, alcançando uma profundidade máxima de 5,06 m. O material encontrado no furo, também é um silte marrom variegado indo de pouco compacto a compacto conforme a profundidade, com Nspt de 8 a 21 golpes até 4 m de profundidade, e no último metro, encontrado um silte com alteração de rocha e Nspt de 30 golpes com apenas 6 cm de penetração.

Em ambas as sondagens supracitadas, não foi encontrado o nível do lençol freático

Figura 42 – Local de execução da SP-401 e amostra de solo obtida.

EMPRES A

SENER

SP-4101

08-04-2021

Já no município de Inácio Martins – PR, antes da Serra da Boa Esperança, foi executada a SP-400 que, assim como as outras sondagens, foi encontrado o impenetrável ao equipamento de percussão antes da profundidade definida.

Alcançando uma profundidade em torno de 2,31 m tanto no furo principal quanto nos deslocamentos, até 0,40 m foi encontrado uma camada de cascalho e em seguida um silte com alteração de rocha com Nspt iniciando em torno de 38 golpes no primeiro metro, até 30golpes com penetração máxima de 6 cm.

Nessa sondagem também não houve indício do nível de água.

Figura 43 – Local de execução da SP-400 e amostra de solo obtida.

A SP-408 executada no município de Irati— PR até o impenetrável ao equipamento de percussão, obteve em toda sua extensão de 13,45 m uma argila arenosa marrom com características de mole a dura de acordo com a profundidade, com variação de Nspt entre 2 e 33 golpes.

O nível d'água foi medido a pouco mais de 1 m de profundidade no furo.

Figura 44 – Local de execução da SP-408 e amostra de solo obtida.

A SM-407 foi executada com 54 m de profundidade, sendo até os 4 m perfurada com lavagem devido ao impenetrável a percussão, e encontrando uma areia siltosa variegada com trechos encontrando fragmentos de rocha até 17,15 m. O Nspt obtido nesse solo foi de 30 golpes para perfurar entre 5 e 12 centímetros. Antes de encontrar o topo rochoso, houve uma passagem por um solo argiloso com fragmentos de rocha onde não foi possível obter o Nspt até os 22,5 m de profundidade. A rocha encontrada trata-se de um basalto com recuperação em torno de 60% até 25 m, aumentando para 100% até os 36 m de profundidade, ocorrendo uma redução da recuperação até 40,5 m com obtenção entre 22 e 34%. Em seguida, houve novamente um aumento da recuperação dos testemunhos entre 70% e 100% respectivamente. As características observadas foram de uma rocha de pouca alteração (A1), indo para moderadamente alterada (A2) no trecho de menor recuperação, com coerência em todos os testemunhos (C1) e um grau de faturamento entre pouco a extremamente alterado ao longo do furo.

A sondagem SM-409 atingiu a profundidade de projeto sem encontrar o topo rochoso, sendo observado até os 15 m de profundidade uma argila siltosa com Nspt entre 7 e 10 golpes e passagens por matacões de basalto. O mesmo ocorreu até o final do furo, porém, sendo encontrado uma areia argilosa com trechos com fragmentos de rocha. O Nspt foi entre 27 golpes até 30 golpes para penetração de 1 cm mais no final do furo.

Figura 46 – Caixa testemunho da SM-409.

BODING DIMENSIA 201034

Na SM-411 a rocha foi encontrada logo na superfície do terreno, sendo considerado um arenito com testemunhos apresentando grau de faturamento entre medianamente (F3) a extremamente fraturada (F5), pouco (A1) a moderadamente alterada (A2) e pouco coerente (C3). A recuperação dos testemunhos foi bastante variável com a profundidade, indo de 10% a 70% no máximo.

O nível do lençol freático foi encontrado a 23,8 m de profundidade.

Figura 47 – Caixa testemunho da SM-411.

A SM-412 também obteve uma recuperação dos testemunhos variável entre 8% e 98% até 24 m de profundidade, encontrado inicialmente até 4 m matacões de basalto e em seguida um solo de alteração com rocha até 15 m extremamente alterada (A4) e fraturada (F5) e incoerente (C4), melhorando suas qualidades após esse trecho.

Não foi encontrado o nível de água nesse furo.

Figura 48 – Caixa testemunho da SM-412.

Já a SM-414 obteve 2 m de um silte argiloso marrom amarelado com Nspt de 9 e 10 golpes, e um metro de lavagem antes de encontrar o topo rochoso. A rocha encontrada no furo foi um basalto sem alteração (A1) com um trecho até 9 m extremamente fraturado (F5) onde a recuperação dos testemunhos foi menor (até 50%), passando de pouco (F2) a medianamente fraturado (F3) onde houve a recuperação maior que 90%.

Figura 49 – Caixa testemunho da SM-414.

Fonte: Elaborado pelo Consórcio TPF-SENER.

8.7 SEGMENTO HOMOGÊNEO 7 – PRUDENTÓPOLIS – LAPA (ENG. BLEY), PR

O segmento homogêneo 7 encontra-se sobre boa parte das rochas sedimentares paleozoicas da Bacia do Paraná composta por arenitos, siltitos, argilitos e folhelhos. O relevo deste este segmento possui uma dissecação moderada, com topos alongados e drenagens retilíneas e côncavas, moderadamente aprofundadas e com vales em "U".

Faz parte deste segmento a sondagem SM-400, e, também, as sondagens da série 300, sendo 4 sondagens a percussão (SP-300, 301, 302 e 303), 4 sondagens mistas (SM-300, 302 e 303), além de 3 sondagens a trado (ST-300, 301 e 302).

A SM-301 foi cancelada por não ter o acesso liberado pelo proprietário da área.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 21 – Dados das sondagens executadas no SH-7.

SONDAGEM								
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO	
				(m)	(m)			
	1	SM-400	MISTA	54	54	PROFUNDIDADE DEFINIDA	CORTE	
	2	SM-300	MISTA	46	46	PROFUNDIDADE DEFINIDA	CORTE	
		SM-301	MISTA	ACESSO NEGADO			TÚNEL	
	3	SM-302	MISTA	54	54	PROFUNDIDADE DEFINIDA	TÚNEL	
	4	SM-303	MISTA	57	57	PROFUNDIDADE DEFINIDA	TÚNEL	
	5	SP-300	PERCUSSÃO	10	10,07	PROFUNDIDADE DEFINIDA	FUNDAÇÃO DE ATERRO E PONTE	
	6	SP-301	PERCUSSÃO	40	3,10	IMPENETRÁVEL	FUNDAÇÃO DE PONTE FUNDAÇÃO DE ATERRO	
		SP-301A			3,09	IMPENETRÁVEL		
	DESLOC.	SP-301B			3,09	IMPENETRÁVEL		
		SP-301C			3,08	IMPENETRÁVEL		
		SP-301D			3,09	IMPENETRÁVEL		
7	7	SP-302		10	3,21	IMPENETRÁVEL		
	DESLOC.	SP-302A	PERCUSSÃO		3,20	IMPENETRÁVEL		
	DESLOC.	SP-302B			3,20	IMPENETRÁVEL		
	8	SP-303		40	4,10	IMPENETRÁVEL		
		SP-303A	PERCUSSÃO		4,09	IMPENETRÁVEL	FUNDAÇÃO DE VIATUDO	
	DESLOC.	SP-303B			4,10	IMPENETRÁVEL		
		SP-303C			4,09	IMPENETRÁVEL		
		SP-303D			4,07	IMPENETRÁVEL		
	9	ST-300	TRADO	1,5	0,7	IMPENETRÁVEL	ANÁLISE DO SUBLEITO	
	10	ST-301	TRADO	1,5	0,7	IMPENETRÁVEL	ANÁLISE DO SUBLEITO	
	11	ST-302	TRADO	1,5	0,9	IMPENETRÁVEL	ANÁLISE DO SUBLEITO	

A SP-303 foi executada no município de Irati – PR, e atingiu o impenetrável em torno de 4,10 m de profundidade, igualmente aos deslocamentos dos furos realizados. Os materiais encontrados nos furos partem de uma argila preta mole até 0,20 m de profundidade com Nspt em torno de 5 golpes, estando logo em seguida um silte com veios variegados até 3 m de profundidade sendo obtido Nspt entre 18 e 37 golpes, finalizando no último metro um silte variegado com alteração de rocha dura com Nspt com 30 golpes com penetração máxima de 9 cm em um dos furos.

Já no município de Fernandes Pinheiros – PR foi executada a SP-302 a qual também interceptou o topo rochoso antes da profundidade especificada. A sondagem obteve até 0,85 m uma argila preta rija com Nspt em torno de 10 golpes, e logo após um silte arenoso com alteração de rocha até aproximadamente 3,20 m de profundidade. O Nspt nessa camada foi maior que 30 golpes no primeiro metro da camada, chegando a maior que 30 golpes com penetração máxima de 5 cm.

Figura 50 – Local de execução da SP-303 e amostra de solo obtida.

EMPRESA
SP-303
06-04-2021

Figura 51 – Local de execução da SP-302 e amostra de solo obtida.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A SP-301 foi executada no município de Porto Amazonas – PR com a profundidade de 3,08 m onde atingiu o impenetrável ao equipamento de percussão. Nos furos executados, até 0,20 m aproximadamente foi encontrada uma areia com pedregulho obtendo 30 golpes com penetração máxima de 12 cm. Em seguida, foi encontrado um silte roxo duro até 2,80 m de profundidade com Nspt de 30 golpes penetrando somente 10 cm nos primeiros 15 cm do ensaio. Nos últimos centímetros do furo, foi encontrado o silte com alteração de rocha.

Figura 52 – Local de execução da SP-301 e amostra de solo obtida.

Já no município de Balsa Nova – PR próximo a Engenheiro Bley em Lapa, a sondagem SP-300 chegou até a profundidade definida (10,07 m) sendo constituída até 6,50 m aproximadamente de uma argila vermelha de média a muita rija, com Nspt aumentando gradativamente de 5 até 21 golpes. Em seguida, encontrou-se uma areia fina compacta a muito compacta até em torno de 8,50 m de profundidade, com Nspt em torno de 34 golpes, seguida até o final do furo por uma areia com pedregulhos muito compacta que atingiu 30 golpes com 7 cm de penetração do equipamento a percussão.

Somente nesta sondagem foi encontrado o nível do lençol freático, medido aproximadamente a 7 m de profundidade. Nas demais sondagens não foi observada a presença de água nos furos.

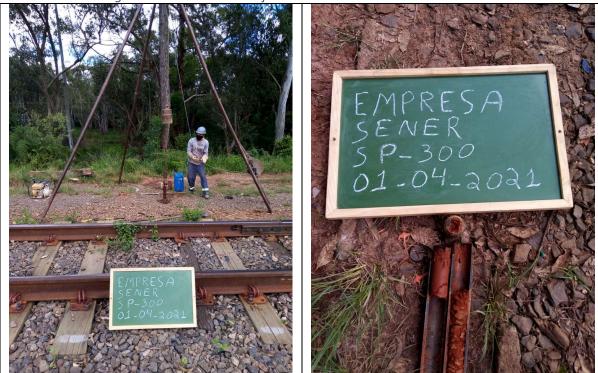


Figura 53 – Local de execução da SP-300 e amostra de solo obtida.

A sondagem mista SM-400 obteve 2 m de um silte arenoso com Nspt de 4 e 5 golpes respectivamente, seguida por 1 m de lavagem antes de iniciar a sondagem rotativa. Até os 9 m de profundidade, foi encontrado um material denominado como folhelho, passando para um siltito até 54 m de profundidade, onde foi finalizado o furo. A recuperação do testemunho ao longo do furo foi bastante variável, indo de trechos com 16% até 100% de recuperação. Como características apresentaram ser moderadamente alterada (A2), com faturamento desde extremamente fraturada (F5) com trechos pouco fraturado (F2) e moderadamente coerente (C2).

O lençol freático foi encontrado a 25 m de profundidade.

Figura 54 – Caixa testemunho da SM-400.

Na SM-300 se obteve uma camada de silte arenoso amarelo com 3 m de espessura, com Nspt entre 7 e 13 golpes, onde logo após foi encontrado o topo rochoso, sendo observado 3 m de arenito com recuperação de 36,3% muito alterado (A3), extremamente fraturado (F5) e pouco coerente (C3). Até os 24 m de profundidade, encontrou-se uma brecha de matriz arenosa com recuperação de testemunhos entre 40% e 99%, sem alteração (A1) e coerente (C1), porém, muito a extremamente fraturado (F4 e F5). Em seguida, novamente classificado como arenito, os testemunhos coletados até 30 m apresentaram uma recuperação em torno de 50% com as mesmas caraterísticas acima, e se repetindo até o final do furo (46 m), porém, denominado uma brecha de matriz arenosa.

O nível de água foi encontrado a 6,20 m de profundidade.


Figura 55 – Caixa testemunho da SM-300.

A sondagem SM-302 foi executada com 54 m de profundidade, portanto atendendo a definição do projeto. Foi encontrado um arenito de pouco a moderadamente alterado (A1 e A2), pouco coerente (C3) e faturamento variando ao longo do furo entre medianamente a extremamente fraturado (F3 a F5). Os testemunhos foram recuperados entre 70% e 100% até 39 m de profundidade, ocorrendo uma diminuição para aproximadamente 7% até 54%.

O lençol freático foi medido a 12 m de profundidade.

A SM-303 obteve uma camada de silte argiloso marrom amarelado com 2 m de espessura, seguida por 1 m de lavagem até o topo rochoso. Os testemunhos coletados mostram um siltito com recuperação entre 32% e 95% até 21 m de profundidade, passando para 100% até 57 m, onde foi finalizado o furo conforme projeto. Até 9 m a rocha se mostrou moderadamente alterada (A2, pouco coerente (C3) e extremamente fraturada (F5), passando para uma rocha com pouca alteração (A1) e moderadamente coerente (C2) e variando entre medianamente a extremamente fraturada (F3 a F5) ao longo da profundidade.

O lençol freático foi encontrado a 33 m.

Figura 57 – Caixa testemunho da SM-303.

8.8 SEGMENTO HOMOGÊNEO 8 – LAPA (ENG. BLEY) – S. JOSÉ DOS PINHAIS, PR

O segmento homogêneo 8 encontra-se sobre a Formação Guabirotuba e início do Complexo Gnáissico, e possui uma paisagem suavemente ondulada, com planícies de várzeas.

As sondagens da série 200 fazem parte deste trecho, sendo 7 sondagens a percussão (SP-200 a 206), 1 sondagem mista (SM-200), e 1 sondagem a trado (ST-200).

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 22 – Dados das sondagens executadas no SH-8.

SONDAGEM							
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO
				(m)	(m)		
	1	SM-200	MISTA	54	54	PROFUNDIDADE DEFINIDA	CORTE
	2	SP-200	PERCUSSÃO	15	15,45	PROFUNDIDADE DEFINIDA	CORTE
	3	SP-201	PERCUSSÃO	10	4,07	IMPENETRÁVEL	FUNDAÇÃO DE
	DESLOC	SP-201A			4,10	IMPENETRÁVEL	ATERRO
	4	SP-202	PERCUSSÃO	40	7,10	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO
8	5	SP-203	PERCUSSÃO	40	20,17	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO
	6	SP-204	PERCUSSÃO	21	18,04	IMPENETRÁVEL	CORTE
	7	SP-205	PERCUSSÃO	40	13,45	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO
	8	SP-206	PERCUSSÃO	10	10,05	PROFUNDIDADE DEFINIDA	FUNDAÇÃO DE ATERRO
	9	ST-200	TRADO	1,5	1,50	PROFUNDIDADE DEFINIDA	ANÁLISE SUBLEITO

Fonte: Elaborado pelo Consórcio TPF-SENER.

No município de Contenda – PR foi executada a SP-206 a qual atingiu a profundidade de projeto (10,05 m) onde foi encontrada uma argila marrom mole até 0,30 m de profundidade com Nspt igual a 4 golpes, sobreposta a uma camada espessa de silte com veios variegado até a profundidade atingida, com valores de Nspt aumentando gradativamente de 5 golpes (mole) a dura, com 24 golpes.

O nível do lençol freático foi encontrado em torno de 7,50 m de profundidade neste furo.

Figura 58 – Local de execução da SP-206 e amostra de solo obtida.

Também em Contenda, na SP-205 foi encontrada uma argila cinza mole com Nspt de 4 golpes em toda a camada de aproximadamente 4,50 m de espessura, e logo em seguida um silte amarelo de médio a duro até aproximadamente 10,50 m, obtendo um Nspt entre 8 e 24 golpes e os últimos 3 m aproximadamente, foi encontrado o mesmo silte com alteração de rocha e Nspt com 30 golpes em 7 cm iniciais da camada, onde aos 13, 44 m foi atingido o impenetrável ao equipamento a percussão.

O nível d'água nesta sondagem foi medido a 3,50 m de profundidade.

Figura 59 – Local de execução da SP-205 e amostra de solo obtida.

EMPRES A

SENER

SP-205

31-03-2021

A SP-204 foi executada no município de Araucária — PR com a profundidade de 18,04 m até o impenetrável ao equipamento de percussão. Até os 3,50 m de profundidade, o material encontrado trata-se uma argila marrom alaranjada com Nspt entre 2 e 4 golpes (mole). A partir dessa profundidade até o final do furo, foi encontrado um silte variegado com aspecto vermelho e amarelo, com Nspt aumentando gradativamente de 7 golpes, até 30 golpes com penetração de 3 cm, sendo nos dois últimos metros, o silte se apresentava com alteração de rocha.

O nível do lençol freático no furo, foi medido em torno de 10 m de profundidade.

Figura 60 – Local de execução da SP-204 e amostras de solo obtidas.

No município de Mandirituba – PR a SP-203 também obteve os mesmos tipos de materiais, com uma camada de argila laranja mole até 3,50 m de profundidade, e até os 20,17 m de profundidade onde se atingiu o impenetrável, um silte variegado com Nspt entre 2 golpes a 30 golpes com penetração de 8 cm no último metro.

Nesta sondagem o nível de água foi obtido bem superficial, estando a menos de 1 m de profundidade.

Figura 61 – Local de execução da SP-203 e amostras de solo obtidas.

Já no município de São José dos Pinhais – PR, foram executadas as sondagens SP-202, 201 e 200 respectivamente no sentido Morretes – PR.

A SP-202 foi executada até o impenetrável ao equipamento de percussão, atingindo essa condição aos 7,11 m de profundidade. Os materiais encontrados uma argila cinza mole com Nspt até 1,50 m aproximadamente, seguida por uma argila amarela média até em torno de 3 m, e logo após, uma argila arenosa variegada dura com Nspt chegando a 40 golpes até 4,50 m aproximadamente. Após essa camada, foi encontrada essa mesma argila com alteração de rocha até o final da perfuração, obtendo um Nspt de 30 golpes com penetração de 3 cm no último metro.

O lençol freático foi medido a uma profundidade de 3 m da boca do furo.

A sondagem SP-201, obteve uma argila marrom e cinza muito mole até 4m de profundidade, sendo encontrado em seguida uma alteração de rocha com apenas 7 cm de espessura, configurando o impenetrável a percussão com total de 4,07 m.

O nível de água foi medido a menos de 1 m de profundidade.

Figura 63 – Local de execução da SP-201 e amostra de solo obtida.

A SP-200 atendeu a profundidade definida no projeto com 15,45 m de profundidade, sendo constituída até 2,50 m de profundidade por uma argila preta e cinza muito mole (2 golpes), seguida por uma argila variegada amarela de mole a média, com Nspt aumentando até em torno de 6,50 m com 2 a 9 golpes. Até a profundidade de aproximadamente 10,50 m, encontrou-se uma argila arenosa cinza mole a média com Nspt entre 4 e 8 golpes, seguida por uma argila arenosa variegada de média a muito rija aumentando o número de golpes (10 a 25 golpes) com a profundidade até o final do furo.

Figura 64 – Local de execução da SP-200 e amostra de solo obtida.

O lençol freático medido nesse furo se encontra a 3 m de profundidade.

A sondagem mista SM-200 executada com 56 m, obteve até os 39 m um arenito pouco alterado (A1), muito (F4) a extremamente fraturado (F5) e uma variação de coerência, indo de coerente a incoerente (C1 a C4). Logo abaixo, foi observado um argilito pouco alterado (A1), indo de moderadamente (C2) a pouco coerente (C3) e muito a extremamente fraturado (F4 e F5).

O nível de água no furo não foi encontrado na profundidade executada.

Figura 65 – Caixa testemunho da SM-200.

8.9 SEGMENTO HOMOGÊNEO 9 – S. JOSÉ DOS PINHAIS – MORRETES, PR

O segmento homogêneo 9 se encontra sobre a Formação Guaratubinha e Migmatitos próximos à Serra do Mar, e ainda possui uma paisagem suavemente ondulada, com planícies de várzeas.

As sondagens nesse trecho são da série 100, sendo em sua maioria sondagens mistas (SM-117 a 121) e 1 sondagem a percussão (SP-103) e 1 sondagem a trado (ST-101). A SM-116 foi cancelada devido a não liberação do acesso pelo proprietário.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 23 – Dados das sondagens executadas no SH-9.

				S	ONDAGEM				
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO		
эп	FURU NO.	DEFINIÇAU	TIPO	(m)	(m)	PARALISAÇAU	OBSERVAÇAU		
	1	ST-101	TRADO	1,50	1,50	PROFUNDIDADE DEFINIDA	ANÁLISE DO SUBLEITO		
	2	SP-103	PERCUSSÃO	10	12,45	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO		
	3	SM-121	MISTA	27	27,45	PROFUNDIDADE DEFINIDA	CORTE		
9	4	SM-120	MISTA	33	38	PROFUNDIDADE DEFINIDA	CORTE		
	5	SM-119	MISTA	30	24	PROFUNDIDADE DEFINIDA	CORTE		
	6	SM-118 MISTA		22	22	PROFUNDIDADE DEFINIDA	CORTE		
	7	SM-117	MISTA	40	40	PROFUNDIDADE DEFINIDA	TÚNEL		
	8	SM-116	MISTA	56	А	CESSO NEGADO	TÚNEL		

A SP-103 foi executada no município de São José dos Pinhais – PR, alcançando o impenetrável a 12,45 m de profundidade. Em toda a extensão, o material encontrado é um silte variegado de coloração alaranjada que vai de fofo a compacto conforme a profundidade, aumentando o Nspt, começando com 2 golpes até 22 golpes.

O lençol freático foi medido no furo em torno de 7 m de profundidade.

Figura 66 – Local de execução da SP-103 e amostra de solo obtida.

No município de Morretes – PR foi executada a SM-117 em região de túneis, onde foi iniciada com sondagem rotativa devido um matacão com espessura de 2,50 m, onde abaixo do mesmo até 5 m, foi encontrada uma argila arenosa marrom rija, com Nspt entre 13 e 18 golpes, passando por uma areia argilosa compacta (Nspt=18 golpes) com 1 m de espessura, voltando para uma argila arenosa dura com 30 golpes com penetração de 2 cm também com 1 m de espessura, onde logo após foi encontrada uma alteração de rocha com argila e fragmentos de rocha até 9 m de profundidade.

Até os 14 m de profundidade, a mesma argila arenosa com Nspt entre 23 e 25 golpes foi encontrada, sobreposta a uma areia argilosa muito compacta até 17,50 m, onde foi finalizada a camada de solo, sendo logo em seguida dado o retorno da perfuração com sondagem rotativa, chegando até 24 m de profundidade, com uma rocha alterada de gnaisse com preenchimento de areia argilosa em alguns trechos, e logo após obtida a recuperação de testemunhos de gnaisse até o final da perfuração (40 m) com RQD entre 92,6 a 100%. As características dos testemunhos coletados mostram uma rocha pouco alterada (A1) e muito coerente (C1), indo de extremamente fraturada (F4) a medianamente fraturada (F3) ao longo da profundidade

O nível do lençol freático nessa sondagem foi encontrado logo na superfície do terreno.

Já a SM-118 executada no mesmo município, foi executada até 22 m de profundidade sendo observado uma argila pouco siltosa média a rija (Nspt entre 6 e 18 golpes) até 5 m de profundidade, passando para mole até 8 m, com Nspt entre 4 e 5 golpes. Em seguida foi obtido uma areia siltosa amarela, de média a compacta com Nspt entre 6 e 20 golpes chegando até 10 m de profundidade, e logo abaixo, até 12,50 m aproximadamente, encontrado um silte arenoso marrom, compacto (20 a 24 golpes) e em seguida, iniciada a perfuração rotativa onde foi encontrada uma rocha extremamente alterada com argila arenosa até o final do furo.

O nível d'água foi encontrado a 14,10 m de profundidade.

Figura 68 – Caixa de testemunhos da SM-118.

A SM-119 foi executada com 24 m de profundidade, sendo encontrado até 2,7 m uma argila siltosa cinza com Nspt de 10 e 21 golpes. Logo em seguida, foi encontrado um argilito com recuperação máxima dos testemunhos em 30%, moderadamente alterado (A2), moderadamente coerente (C2) e extremamente fraturado (F5).

O nível do lençol freático foi encontrado a 2,60 m de profundidade.

Figura 69 – Caixa testemunhos da SM-119.

Na sondagem SM-120 se obteve uma argila siltosa cinza até 3,17 m de profundidade, com Nspt entre 33 e 30 golpes para penetração de 2 centímetros. Em seguida encontrou-se o topo rochoso constituído por um argilito moderadamente alterado (A2), moderadamente coerente (C2) e extremamente fraturado (F5) e recuperação dos testemunhos em no máximo 63% até 38 m de profundidade.

Não foi observado água no furo.

Fonte: Elaborado pelo Consórcio TPF-SENER.

A SM-121 foi executada até 27,45 m de profundidade e não se encontrou o topo rochoso nessa sondagem. Foi observado em até 0,6 m de profundidade um aterro constituído por uma argila siltosa, e em seguida obteve-se uma areia argilosa branca até 10 m de profundidade com Nspt variando de 8 a 18 golpes, sendo nos dois últimos metros da camada 30 golpes para penetração de 1 centímetro. Abaixo, obteve-se uma areia siltosa até 23 m de profundidade com Nspt de 30 a 38 golpes, voltando a obter uma areia argilosa até 27,45 m, com Nspt entre 29 e 43 golpes.

O nível de água foi medido a 7,10 m de profundidade.

8.10 SEGMENTO HOMOGÊNEO 10 - MORRETES - PARANAGUÁ, PR

Já dentro dos aspectos de relevo da Serra do Mar, com grandes maciços rochosos e escarpados sobre rochas graníticas e granitoides, sendo esse segmento constituído por grande parte em túneis até alcançar as Planície Litorânea em Paranaguá – PR.

As sondagens nesse trecho são da série 100, sendo em sua maioria sondagens mistas (SM-100 a 115) nos trechos dos túneis previsto neste local as quais, em função das dificuldades de acesso com equipamentos para a realização das sondagens, da SM-104 a 115 foram canceladas devido à dificuldade de acesso com os equipamentos de sondagem rotativa, porém, nesses trechos foram executados ensaios sísmicos.

Além disso, foram previstas três sondagens a percussão (SP-100 a 102), sendo a SP-100 e 102 canceladas pela não liberação do acesso pelo proprietário das áreas.

Já no final do traçado foi executada uma sondagem a trado (ST-100) além de mais duas sondagens sendo uma a trado e uma a percussão, denominadas como ST-01 e SP-01 respectivamente, executadas no retorno especificado no projeto.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 24 – Dados das sondagens executadas no SH-10.

				S	ONDAGEM			
	EURO N	DEFINIÇÃO.	TID 6	PROF.	PROF. EXEC.	DADAUGAGÃO.	000000110000	
SH	FURO No.	DEFINIÇÃO	TIPO	(m)	(m)	PARALISAÇÃO	OBSERVAÇÃO	
	1	ST-100	TRADO	1,50	0,8	IMPENETRÁVEL	ANÁLISE DO SUBLEITO	
	2	SP-100	PERCUSSÃO	10	А	CESSO NEGADO	FUNDAÇÃO DE ATERRO	
	3	SP-101	PERCUSSÃO	40	8,07	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO	
	4	SP-102	PERCUSSÃO	10	А	CESSO NEGADO	FUNDAÇÃO DE ATERRO	
	5	SM-100	MISTA	49	49	PROFUNDIDADE DEFINIDA	TÚNEL	
	6	SM-101	MISTA	70	А	CESSO NEGADO	FUNDAÇÃO DE VIADUTO	
10	7	SM-102	MISTA	59	59	PROFUNDIDADE DEFINIDA	TÚNEL	
10	8	SM-103	MISTA	50	50	PROFUNDIDADE DEFINIDA	TÚNEL	
	9	SM-104	MISTA	26			TÚNEL	
	10	SM-105	MISTA	32			TÚNEL	
	11	SM-106	MISTA	40			TÚNEL	
	12	SM-107	MISTA	37			TÚNEL	
	13	SM-108	MISTA	40 CANCELADAS E SUBSTITUÍDAS		TÚNEL		
	14	SM-109	MISTA	37	POF	R ENSAIO SÍSMICO	TÚNEL	
	15	SM-110	MISTA	47			TÚNEL	
	16	SM-111	MISTA	26		TÚNEL		
	17	SM-112	MISTA	25			TÚNEL	
	18	SM-113	MISTA	24		TÚNEL		

	-			
44 166		=N	VI =	R
	-			

				S	ONDAGEM		
SH	FURO No.	DEFINIÇÃO	TIPO	PROF.	PROF. EXEC.	PARALISAÇÃO	OBSERVAÇÃO
ЭП	FUNC NO.	DEFIINIÇAU	IIFO	(m)	(m)	PARALISAÇAU	ODSERVAÇAO
	19	SM-114	MISTA	31			TÚNEL
	20	SM-115	MISTA	49			TÚNEL
	21	SM-116	MISTA	56	A	CESSO NEGADO	TÚNEL
	22	ST-01	TRADO	2,3	3,0 PROFUNDIDADE DEFINIDA		RETORNO
	23	SP-01	PERCUSSÃO	40	17,1	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO

A sondagem SP-101 executada no município de Morretes – PR, chegou à profundidade de 8,07 m onde atingiu o impenetrável ao equipamento de percussão. O material obtido nessa sondagem foi uma argila marrom com pedregulhos muito mole a 0,6 m de profundidade, seguida por uma argila arenosa cinza até o final do furo onde atingiu o impenetrável a 8,06 m com Nspt entre 6 e 30 golpes com penetração de 8 cm no último metro quando foi encontrado alteração de rocha.

O nível de água nessa sondagem foi medido a 1 m de profundidade.

Figura 72 – Local de execução da SP-101 e amostra de solo obtida.

Já a SP-01 executada no município de Paranaguá — PR foi executada até 17,10 m de profundidade encontrando o impenetrável ao equipamento de percussão, obtendo uma intercalação de argilas arenosas pouco arenosa a arenosa, cinza e amarela respectivamente. A 1,50 m foi encontrada uma argila preta mole com Nspt igual a 4 golpes, sendo seguida por uma argila de mole a média com Nspt entre 4 e 6 golpes até 3,50 m de profundidade. Logo abaixo, até próximo a 5,50 m, encontrou-se uma argila amarela média com Nspt igual a 8 golpes e partir daí uma camada espessa de argila cinza rija a dura que chegou a próximo de 13,50 m com Nspt variando com a profundidade entre 11 e 33 golpes. Na parcela final, a argila voltou a ser amarela, sendo encontrado nos últimos 1,50 m alteração de rocha com Nspt entre 33 golpes e 30 golpes com penetração de 9 cm no primeiro terço da camada final.

O nível do lençol freático foi encontrado a aproximadamente 3 m de profundidade.

Sobre as sondagens mistas executadas, a SM-100 obteve uma camada de solo com passagem por matação até 16,50 m de profundidade. Com 1,30m de profundidade, foi encontrado o primeiro matação com uma argila siltosa marrom com Nspt entre 13 e 30 golpes sobreposta ao mesmo. Após 2 m de profundidade, permaneceu a mesma argila siltosa média com Nspt em torno de 7 golpes até 5,20 m, onde foi identificado outro matação, o qual atingiu até 6 m de profundidade. Abaixo do mesmo, ainda se encontrou 1 m da argila siltosa com Nspt igual a 10 golpes, sendo observado logo após uma areia argilosa medianamente compacta com Nspt entre 10 e 17 golpes chegando até 10 m de profundidade. Abaixo desta camada, foi encontrada novamente uma argila siltosa rija (18 golpes) com 1 m de espessura, e em seguida um silte argiloso vermelho rijo a muito rijo até 16,50 m de profundidade, com Nspt variando de 11 a 27 golpes.

Após essa profundidade, deu-se início à sondagem rotativa a qual atingiu a profundidade em torno de 23 m configurando um matação, senso retornado o ensaio com medidas de Nspt com a obtenção de uma argila siltosa média a rija com Nspt entre 7 e 11 golpes. Logo em seguida foi observada uma areia argilosa rija até 29,45 m, onde foi encontrado um outro matação até 32 m de profundidade. Após esse matação, retornou a encontrar uma areia argilosa, medianamente compacta (13 a 16 golpes) a compacta (29 a 30 golpes) a aproximadamente 37,50 m.

Até 49 m de profundidade, foi encontrado o topo rochoso com a obtenção de testemunhos de granito com baixa recuperação (RQD entre 0,6 e 16% com uma passagem com 93%) sendo caracterizada uma rocha extremamente alterada (A4), extremamente fraturada (F5) e totalmente friável (C4).

O lençol freático medido no furo foi observado a 8,60 m de profundidade.

Figura 74 – Caixa de testemunhos da SM-100.

Já na SM-102 foi encontrado solo até uma profundidade de 18 m, sendo em maior extensão uma areia argilosa marrom com passagens por uma argila arenosa marrom. As camadas de areias encontradas nesse furo, foram consideradas de medianamente compacta na maior parcela, com Nspt variando entre 11 e 15 golpes. A primeira camada de argila, em torno de 2 m de espessura foi encontrada a 2,45 m de profundidade com 8 e 9 golpes respectivamente. A segunda camada foi encontrada a 11 m de profundidade e, também, com 2 m de espessura, obteve um Nspt igual a 11 golpes.

Após essa profundidade, deu-se início à sondagem rotativa a qual atingiu a profundidade definida em 59 m. Até os 25,50 m de profundidade não houve recuperação de material, sendo observado rocha alterada com preenchimento de solo arenoso marrom escuro. Após esse material, foi recuperado testemunhos de rocha até 31,5 m aproximadamente, denominada como gabro com RQD entre 25% e 45% (muito pobre a pobre) com características de pouco alterada (A1), trechos entre medianamente a pouco fraturada (F2 e F1) e muito coerente (C1)

Após esse trecho até o final do furo, a recuperação foi de 100%, com uma passagem entre 41 e 43 m com RQD = 77% e 78%. As características observadas nos testemunhos foram de uma rocha pouco alterada (A1), extremamente fraturada (F4) com alguns trechos entre muito a medianamente fraturada (F3/F2), e em toda extensão uma rocha muito coerente (C1).

O nível de água no furo foi medido a 28 m de profundidade.

Figura 75 – Caixa de testemunhos da SM-102.

A SM-103, executada com 50 m de profundidade, obteve até próximo de 15 m uma camada de solo variando entre uma areia argilosa marrom pouco a medianamente compacta com Nspt entre 5 e 13 golpes, e argila siltosa média a rija com Nspt entre 9 e 11 golpes.

Nos primeiros metros com sondagem rotativa, foi obtida uma recuperação RQD ente 26 e 65% até 24 m de profundidade, sendo a partir daí um RQD de 100% até o final do furo. No primeiro trecho, as características observadas nos testemunhos foram de um gabro pouco alterado (A1), muito fraturado (F3) a porções em fragmentos (F5) e partindo de coerente a muito coerente (C2/C1). Já no trecho onde foi obtida recuperação total, a rocha tem características de pouco alterada (A1) e muito coerente (C1), com fraturamento variando em fragmentos a extremamente fraturado (F5/F4) até 34,50 m aproximadamente, melhorando o grau para muito a medianamente fraturado (F3/F2) até o final.

O nível d'água foi medido a 16,30 m de profundidade.

Figura 76 – Caixa de testemunhos da SM-103.

8.11 SEGMENTO HOMOGÊNEO 11 – RAMAL CASCAVEL – FOZ DO IGUAÇU, PR

Esse segmento também está assente sobre rochas basálticas da Formação Serra Geral, e relevo com dissecação moderada, topos alongados e aplainados, drenagens convexas com aprofundamento moderado e vales em "V".

Neste trecho foram executadas 9 sondagens da série 1000 e 5 da série 1100. Da série 1000, foram duas sondagens a percussão (SP-1001 e 1002) e sete sondagens mistas (SM-1000 a 1006). A sondagem SP-1000 não foi executada por não liberação do proprietário na área.

Já a SM-1001 foi paralisada antes do atendimento da profundidade de projeto devido o proprietário solicitar a paralisação das atividades.

Na série 1100, foram executadas três sondagens a percussão (SP-1100, 1101 e 1102) e duas mistas (SM-1100 e 1101). A SP-1103 também não foi executada por falta de liberação do proprietário ao local.

Na tabela abaixo estão as informações de profundidade estimada, o objetivo da sondagem e os dados efetivamente executados.

Tabela 25 – Dados das sondagens executadas no SH-11.

				S	ONDAGEM		
CII	EUDO N.	DEELNIGÃO	TIDO	PROF.	PROF. EXEC.	PARALICAÇÃO.	00000014680
SH	FURO No.	DEFINIÇÃO	TIPO	(m)	(m)	PARALISAÇÃO	OBSERVAÇÃO
	1	SP-1000	PERCUSSÃO	10	А	CESSO NEGADO	FUNDAÇÃO DE ATERRO
	2	SP-1001	PERCUSSÃO	40	11,96	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO
	3	SP-1002	PERCUSSÃO	40	16,45	IMPENETRÁVEL	FUNDAÇÃO DE VIADUTO
	4	SM-1000	MISTA	45	22,20	RQD>90% EM 5m CONSEC.	CORTE
	5	SM-1001	MISTA	25	18,45	PARALISADA POR SOLICITAÇÃO DO PROPRIETÁRIO	CORTE
	6	SM-1002	MISTA	22	22,17	PROFUNDIDADE DEFINIDA	CORTE
	6 7	SM-1003	MISTA	40	11,80	RQD>90% EM 5m CONSEC	FUNDAÇÃO DE VIADUTO
11	8	SM-1004	MISTA	55	28,70	RQD>90% EM 5m CONSEC	TÚNEL
	9	SM-1005	MISTA	44	16,70	RQD>90% EM 5m CONSEC	TÚNEL
	10	SM-1006	MISTA	46	12,60	RQD>90% EM 5m CONSEC	TÚNEL
	11	SP-1100	PERCUSSÃO	40	5,94	IMPENETRÁVEL	FUNDAÇÃO DE
	DESLOC.	SP-1100A			14,95	IMPENETRÁVEL	VIADUTO
	12	SP-1101	PERCUSSÃO	10	10,45	PROFUNDIDADE DEFINIDA	FUNDAÇÃO DE ATERRO
	13	SP-1102 PERCUSSÃO		10	8,45	IMPENETRÁVEL	FUNDAÇÃO DE ATERRO
	14	SP-1103	PERCUSSÃO	10	А	CESSO NEGADO	FUNDAÇÃO DE ATERRO
	15	SM-1100	MISTA	40	27,80	RQD>90% EM 5m CONSEC	CORTE
	16	SM-1101	MISTA	15	15,40	PROFUNDIDADE DEFINIDA	CORTE

Dentro do município de Céu Azul, muito próximo à divisa com Vera Cruz do Oeste – PR, foi executada a SP-1001 a qual atingiu o impenetrável a 11,96 m de profundidade. Foi encontrada uma argila siltosa marrom avermelhada mole até 2,5 m de profundidade, com Nspt igual a 5 golpes. Em seguida e até o final do furo, foi obtido um silte arenoso marrom arroxeado, compacto com Nspt aumentando de acordo com a profundidade, sendo de 13 a 34 golpes.

O nível de água não foi encontrado na sondagem.

Figura 77 – Local de execução da SP-1001 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

No mesmo município, a SP-1002 foi executada até 16,45 m de profundidade, onde encontrou o impenetrável ao equipamento de percussão. Nessa sondagem encontrou-se os mesmos tipos de solos da SP-1001, sendo a argila siltosa marrom avermelhada obtida até 7 m de profundidade, com consistência de mole a rija (Nspt entre 5 e 16 golpes), sobreposta a um silte arenoso vermelho compacto, com Nspt entre 33 e 41 golpes

O lençol freático foi medido a aproximadamente 15 m de profundidade no furo, ou seja, próximo ao contato solo/rocha.

A SM-1001 obteve uma argila siltosa em toda sua profundidade (18,45 m) com Nspt iniciando com 3 golpes, aumentando com a profundidade chegando até 13 golpes.

A SM-1003 foi executada até 11,80 m de profundidade, sendo encontrado o topo rochoso abaixo de 40 cm, onde os testemunhos mostraram ser um basalto brando (R2), moderadamente alterado (W3) e muito fraturado (F4) com recuperação de 55% a 80% até 3,40 m, aumentando para acima de 80% com caraterísticas de uma rocha sã (W1) muito resistente (R5) e pouco fraturado (F2).

Em ambas as sondagens acima não foi encontrado o nível do lençol freático.

No município de Cascavel – PR, a sondagem SM-1000 obteve na perfuração até 10 m de profundidade uma argila silto-arenosa marrom avermelhada com Nspt variando entre 4 e 8 golpes, seguida por um silte arenoso vermelho arroxeado com Nspt entre 8 e 12 golpes até 16,6 m, onde foi encontrado o topo rochoso. A rocha observada nos testemunhos trata-se de um basalto são (W1), extremamente resistente (R6) e pouco fraturado (F2), com a recuperação de 75% no primeiro metro, passando para 100% até o final do furo (22,2 m).

Já em Vera Cruz do Oeste – PR, a SM-1002 foi executada até 22,17 m sendo encontrado um solo composto por uma argila silto-arenosa até 10,45 m de profundidade, com Nspt entre 3 e 8 golpes, estando abaixo dessa um silte arenoso com Nspt variando entre 7 a 13 golpes até 19,45 m, onde foi encontrado uma rocha basáltica com recuperação acima de 90% até o final do furo, inicialmente com uma rocha moderadamente alterada (W3), medianamente resistente (R3) e muito fraturada (F4) até 20,85 m, melhorando sua qualidade para uma rocha sã (W1) extremamente resistente (R6) e pouco fraturada (F2). O lençol freático foi encontrado a 13,9 m.

Em Matelândia - PR, na SM-1004 foi encontrado até 6,80 m de profundidade uma argila silto-arenosa com Nspt entre 4 e 9 golpes. Logo após, foi encontrado o topo rochoso com a recuperação dos testemunhos de basalto até 23 m entre 40% e 70%, sendo uma rocha muito branda (R1) e alterada (W3) e extremamente fraturada (F5). Em seguida, as características melhoraram até o final do furo com recuperação acima de 97% sendo uma rocha sã (W1), muito resistente (R5) e pouco fraturada (F2). O nível de água encontrado no furo foi medido a 15,86 m de profundidade.

No mesmo município, na SM-1005 o topo rochoso foi encontrado logo na superfície do terreno sendo uma rocha basáltica com recuperação dos testemunhos entre 50% e 67%, sendo uma rocha moderadamente alterada (W3), medianamente resistente (R3) e muito fraturada (F4) até 6,20 m de profundidade, melhorando suas características até o final do furo (16,70 m), para uma rocha pouco alterada (W2), pouco fraturada (F2) e muito resistente (R2), com recuperação acima de 80%.

Ainda em Matelândia, a SM-1006 foi executada até 12,60 m de profundidade, obtendo uma argila siltosa marrom com espessura de 1,90 m e Nspt igual a 5 golpes, seguida pelo topo rochoso sendo até 4,90 m obtida uma rocha de basalto branda (R2), muito alterada (W4) e extremamente fraturada (F5), com melhora das características ao longo da profundidade, com recuperação de 100%, pouco alterada (W2), pouco fraturada (F2) e muito resistente (R5).

O lençol freático não foi encontrado na SM-1005 e nem na 1006.

Figura 78 – Local de execução da SP-1001 e amostras de solo obtidas.

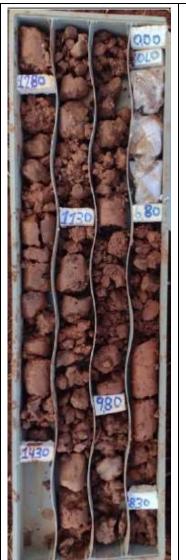
Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 79 – Local de execução da SP-1002 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 80 – Caixa testemunho da SM-1000.

Figura 82 – Caixa testemunho da SM-1002.



Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 85 – Caixa testemunho da SM-1005.

Figura 86 – Caixa testemunho da SM-1006.

Já no município de Medianeira – PR a execução da SP-1100 foi até a profundidade de 5,94 m onde atingiu o impenetrável a percussão, sendo encontrada em toda a extensão uma argila siltosa vermelha, de muito mole (Nspt = 2 golpes) a dura (31 golpes) conforme a profundidade.

Foi feito o deslocamento do furo em 2 m da posição original, e executada a sondagem SP-1100A, a qual atingiu a profundidade de 14,75 m, ou seja, há um indicativo da existência de matacão nesse local. Nessa sondagem, foi encontrada uma argila siltosa vermelha mole até 7 m de profundidade, passando de média a dura conforme a profundidade, com Nspt variando entre 6 e 32 golpes.

Não foi encontrado o nível d'água nessas sondagens.

Figura 87 – Local de execução da SP-1100 e amostras de solo obtidas.

Fonte: Elaborado pelo Consórcio TPF-SENER.

No mesmo município foi executada também a SM-1100 onde foi encontrado até 12,50 m uma argila siltosa vermelha com Nspt variando de 3 a 20 golpes, seguida pelo topo rochoso de origem basáltica, sendo até os 18 m de profundidade considerada uma rocha branda (R2), moderadamente alterada (W3) e muito fraturada (F4), com uma passagem por uma rocha muito alterada (W4), muito branda (R1) e muito fraturada (F4) até 22,60 m, obtendo uma melhora até o final do furo (27,80 m) considerada uma rocha pouco alterada (W2), muito resistente (R5) e pouco fraturada (F2).

O lençol freático foi encontrado a 21,70 m de profundidade.

Figura 88 – Caixa testemunho da SM-1100.

Em São Miguel do Iguaçu – PR a sondagem SP-1101 foi executada até a profundidade definida (10,45 m) sendo obtido até 4,50 m uma argila siltosa marrom avermelhada com Nspt entre 4 e 8 golpes sobreposta a um silte arenoso vermelho medianamente compacto, com Nspt entre 8 e 18 golpes até o final do furo. O lençol freático foi medido em torno de 5,70 m de profundidade.

Figura 89 – Local de execução da SP-1101 e amostras de solo obtidas.

A SP-1102 também foi executada no mesmo município da sondagem supracitada, com 8,45 m de profundidade obtendo até 2,45 m de profundidade uma argila siltosa marrom avermelhada, molde com Nspt igual a 5 golpes, e abaixo dessa camada um silte arenoso variegado com alteração de rocha de medianamente compacto com Nspt com 9 golpes, aumentando gradativamente até o final do furo chegando a 32 golpes (compacto). O nível de água no furo foi medido a 1,45m de profundidade.

Figura 90 – Local de execução da SP-1102 e amostras de solo obtidas.

No município de Santa Teresinha de Itaipu – PR, foi executada a sondagem SM-1101 na profundidade definida em projeto (15,40 m) e não foi encontrado o topo rochoso, sendo observado até 10 m uma argila siltosa vermelha clara a qual obteve um número de golpes Nspt ente 3 até 46 golpes no último metro da camada, seguida por uma argila arenosa variegada até o final do furo com Nspt entre 40 e 50 golpes. O lençol freático não foi encontrado na profundidade perfurada.

9 RESULTADOS DOS ENSAIOS

Abaixo estão apresentados os resultados dos ensaios realizados, sendo separados conforme a classificação amplamente utilizada pela *Bureau of Public Roads* e revisto pelo *Highway Research Board* – HRB (1945) normatizado pela *American Association of State Highway and Transportation Officials* - *AASHTO M145* (1973).

Essa classificação baseia-se em índices físicos (granulometria, limite de liquidez e índice de plasticidade) e no índice de grupo (IG), onde expressa a capacidade de suporte do solo na fundação de um pavimento.

Abaixo está apresentada a classificação utilizada.

Figura 92 – Classificação HRB - AASHTO.

Classificação Geral				GRANU 200 < 35				SOLO		O-ARGIL > 35%)	osos	
Grupos	A-	.1	A-3		Α	-2		A-4	A-5	A-6	A-7	
Subgrupos	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-5 A-7-6	
P10	< 50	-	-	-	-	-	-	-	-	-	-	
P40	< 30	< 50	> 50	-	-	-	-	-	(=)	-	-	
P200	< 15	< 25	< 10	< 35	<35	< 35	< 35	> 35	> 35	> 35	> 35	
LL	-	-	-	< 40	> 40	< 40	> 40	< 40	> 40	< 40	> 40	
IP	< 6	< 6	NP	< 10	< 10	> 10	> 10	< 10	< 10	> 10	> 10	
Índice de grupo (IG)	0	0	0	0	0	< 4	< 4	< 8	< 12	< 16	< 20	
Tipos de material	Fragm de pe pedreg are	ulho e	areia fina			os e arei u argilos		Solos	siltosos	Solos a	argilosos	
Classificação como sub leito Excelente a bom Regular a mau												
Podemos acrescer à	estes o	tipo A-8	3:solos	orgânic	os/turfa	s, impre	estáveis	como	bases c	le pavin	nentos	

Fonte: DER (1996)

No Segmento Homogêneo 1 não foram definidos ensaios devido a homogeneidade geológica e litológica entre os segmentos 1 e 2, sendo executados os ensaios nas sondagens do SH-2 dentro do contexto citado acima.

9.1 CLASSIFICAÇÃO HRB - A-2-4

Na tabela abaixo estão os dados obtidos nos ensaios executados os quais obtiveram a classificação de areias argilosas ou siltosas (A-2-4).

Tabela 26 – Dados dos ensaios executados no SH-2.

SONDAGEM	GRAN	GRANULOMETRIA (%)							Wnat	Ynat	COMPA	ACTAÇÃO		EXPAN-
SONDAGEM	AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	(%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-SM-903	87	5	8	-	-	-	A-2-4	0	15,08	1,934	10,23	1,903	10,01	0,05
ST-SM-904	84	9	7	-	-	-	A-2-4	0	31,11	2,113	12,45	1,838	4,90	0,02
ST-SP-908	84	8	8	-	-	-	A-2-4	0	25,47	1,999	14,12	1,803	10,60	0,05

Fonte: Elaborado pelo Consórcio TPF-SENER.

Os resultados obtidos mostram que ao longo desse segmento, o solo se trata de uma areia siltoargilosa sem plasticidade, tanto em superfície quanto em profundidade, já que a coleta de amostras da SP-908 e SM-904 feita a 1,5 m da superfície do terreno, e a amostra da SM-903 a 10 m de profundidade.

Diferentemente da análise pedológica (táctil-visual) feita nos boletins de sondagens, da SP-908 onde se descreve o solo como uma argila siltosa, e da SM-904, considerado uma argila arenosa, deve-se ao fato que, os grãos de areia, principalmente areia fina, podem estar envoltos pelas partículas mais finas do solo, ou por uma forte ligação química entre as partículas, o que dificulta a identificação e caracterização correta do solo em questão.

Para o uso desse solo na engenharia, segundo a classificação e índice de grupo igual a zero (IG=0), trata-se de um excelente material como subleito, além de ter uma boa característica para empréstimos de aterros, obtendo um valor de CBR e expansão dentro ou próximos a limites definidos pelos órgãos competentes, sendo CBR >5% e expansão <2% para o DNIT, e CBR >2% e expansão <2% para Valec.

Ainda segundo a literatura técnica, este solo oferece uma boa compactação, sendo que para isso devese corrigir a umidade conforme os dados obtidos, uma boa drenagem e excelente material para fundação.

9.2 CLASSIFICAÇÃO HRB – A-4, A-5, A-6 E A-7

Nas tabelas abaixo estão os resultados obtidos nos ensaios executados os quais obtiveram a classificação de solos argilosos com os diferentes valores de LL, IP e IG dentro das faixas consideradas (A-4, A-5, A-6 e A-7).

Tabela 27 – Dados dos ensaios executados no SH-3.

	GRAN	ULOMET	RIA (%)	LL LP							COMPA	ACTAÇÃO		EXPAN-
SONDAGEM	AREIA	SILTE	ARGILA	(%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-SM-900	19	26	55	62	41	21	A-7-5	16,4	25,47	1,61	33,35	1,25	8,7	0,08
ST-SM- 901A	22	26	52	48	31	17	A-7-5	12,4	28,38	1,78	26,04	1,20	4,5	0,12
ST-SM-901B	28	34	38	85	49	36	A-7-5	20,0	28,91	-	30,47	1,19	3,1	0,44
ST-SM-902	32	15	53	44	27	17	A-7-6	11,6	26,77	-	28,51	1,52	6	0,05
ST-SP-900	20	25	55	49	36	13	A-7-5	11,0	20,63	1,78	30,07	1,29	11,3	0,09
ST-SP-902	31	12	57	41	24	17	A-7-6	11,0	29,56	2,14	20,83	1,57	5	0,16
ST-SP-903	13	19	69	53	29	24	A-7-6	16,2	33,39	1,77	22,63	1,26	2,6	0,54
ST-SP-904	45	20	35	51	36	15	A-7-5	9,2	31,11	2,11	22,43	1,59	5,2	0,39
ST-900	12	28	60	50	34	16	A-7-5	12,4	30,98	1,78	26,1	1,25	4,3	0,45
ST-901	22	25	53	42	28	14	A-7-6	10,0	28,91	1,97	30,52	1,45	4,6	0,24

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 28 – Dados dos ensaios executados no SH-4.

	GRANULOMETRIA (%)							Wnat		COMP	ACTAÇÃO		EXPAN-	
SONDAGEM	AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-800	38,1	23,3	38,6	48	34,7	13,3	A-7-6	9,1	16,3	1,89	33,2	1,49	7,1	0,77
ST-SM-800	31,48	36,48	32,04	35,41	29,83	5,58	A-4	6,8	20,5	1,94	37,7	1,40	4,1	0,24
ST-SM-801	36,64	40,04	23,32	44,1	34,6	9,5	A-5	7,1	16,3	1,79	24,5	1,58	5,9	0,8
ST-801	39,5	31,5	28,9	58,2	42,5	15,7	A-7-6	10,1	19,5	1,86	33,6	1,51	5,6	0,51
ST-SM-600	30,22	36,84	32,94	47,33	33,13	14,2	A-6	11,14	17,8	1,88	24,5	1,64	5,5	0,62
ST-SP-600	31,4	18,3	50,3	45,3	42,7	2,6	A-7-6	8,1	23,4	2,01	16,7	1,74	4	0,83

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 29 – Dados dos ensaios executados no SH-5.

			1 010 010		2000		21134103	CACC		3 110 011	<i>-</i> .			
	GRAN	ULOMET	TRIA (%)								СОМР	ACTAÇÃO		EXPAN-
SONDAGEM	AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-SP-500	37,2	15,9	46,8	45,2	32,5	12,7	A-7-6	8,7	29,8	1,98	23,3	1,61	3,4	0,71
ST-SP-502	25,4	26,3	48,3	43,5	32,6	10,9	A-5	9,1	29,8	2,01	34,3	1,43	6,5	0,1

Tabela 30 – Dados dos ensaios executados no SH-6.

	GRANULOMETRIA (%)	RIA (%)	LL LP IP .						Wnat Vnat	COMPACTAÇÃO		CDD	EXPAN-	
SONDAGEM	AREIA	SILTE	ARGILA	(%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-SP-400	27	43	32,6	43,3	38,1	5,2	A-5	8,7	23,4	1,95	34,7	1,39	7,7	0,46
ST-SP-402	34,5	36,6	28,9	40,1	30,7	9,4	A-5	7,1	28,4	1,82	24,1	1,57	3,7	0,79

Tabela 31 – Dados dos ensaios executados no SH-7.

	GRAN	ULOMET	RIA (%)								СОМР	ACTAÇÃO		EXPAN-
SONDAGEM	AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-300	35,3	37,2	27,5	38,7	25,7	13	A-6	7,4	14,9	2,1	16,6	1,78	11,2	0,13
ST-301	23,9	23,2	52,9	34,6	22,2	12,4	A-6	7,9	26,6	1,75	20,2	1,63	8,5	0,46
ST-302	39,2	33,6	27,2	34,5	21,4	13,1	A-6	7,9	44,9	1,68	32,7	1,60	7,1	0,8
ST-SP-301	31,9	35,4	32,7	40	31,4	8,6	A-4	7,9	16,3	1,98	33,3	1,45	5,5	1
ST-SP-303	27,9	37,4	34,7	38,7	27,5	11,2	A-6	8,5	26,6	1,79	36,6	1,48	3,8	0,8
ST-SM-300	36,3	40,9	22,5	35,6	28,6	6,99	A-4	5,9	20,1	1,85	15,8	1,76	5,3	0,64
ST-SM-303	30,91	36,79	32,3	26,6	25	1,6	A-4	7,0	18,5	1,9	14,8	1,77	9,2	0,34
ST-SM-400	35,35	38,18	26,47	38,63	29,48	9,16	A-4	6,5	16,3	2,1	20,0	1,81	2,7	1,75

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 32 – Dados dos ensaios executados no SH-8.

SONDAGEM	GRANULOMETRIA (%)										COMPACTAÇÃO			EXPAN-
	AREIA	SILTE	ARGILA	(%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-200	35,6	17,1	47,2	51,2	38,4	12,8	A-7-6	10,6	38,9	1,77	20,9	1,66	2	1,82
ST-SP-200	34,1	19,8	46,1	38,7	27,5	11,2	A-6	7,5	37	1,86	24,5	1,51	1,6	0,94
ST-SP-202	39,7	16,6	43,6	36,1	22,1	13,9	A-6	7,1	16,3	1,87	27,7	1,59	5,1	0,12
ST-SP-203	41,9	34,9	23,1	46,5	34,9	11,5	A-7-6	7,2	29,8	1,77	25,3	1,54	2,5	0,88
ST-SP-204	33,7	40,5	25,7	46,3	36,3	9,95	A-5	7,4	37	1,69	21,5	1,59	5,4	0,98

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 33 – Dados dos ensaios executados no SH-9.

SONDAGEM	GRANULOMETRIA (%)									V	COMPACTAÇÃO			EXPAN-
	AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	(%)	SÃO (%)
ST-101	25,5	27,4	47,1	45,9	32,1	13,8	A-7-6	10,7	32,8	1,62	20,5	1,77	6,5	0,98

Tabela 34 – Dados dos ensaios executados no SH-10.

	SONDAGEM	GRANULOMETRIA (%)										COMPACTAÇÃO			EXPAN-
		AREIA	SILTE	ARGILA	LL (%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
	ST-SM-100	34,6	17,1	48,2	36,1	27,4	8,6	A-4	6,0	17,6	1,45	19,5	1,6	5,3	0,64
	ST-100	25,1	29,6	45,3	49,5	35,8	13,6	A-7-6	11,3	25	1,84	19,5	1,71	7,8	0,22
	ST-01	33,5	18,1	48,3	44,18	35,1	9,02	A-5	7,4	14,9	2,21	16,6	1,60	7,3	0,61
	ST-SP-01	38,4	17,8	43,8	39,35	25,8	13,5	A-6	6,3	25	1,84	23,4	1,61	2,6	0,79

Tabela 35 – Dados dos ensajos executados no SH-11.

SONDAGEM	GRANULOMETRIA (%)										COMPACTAÇÃO			EXPAN-
	AREIA	SILTE	ARGILA	(%)	LP (%)	IP (%)	HRB	IG	Wnat (%)	Ynat (g/cm³)	Wot. (%)	Ys máx. (g/cm³)	CBR (%)	SÃO (%)
ST-SM-1000	26	37	37	48	37	11	A-7-5	10,0	23,94	-	31,29	1,28	6,4	0,17
ST-SM-1001	8	16	76	52	34	18	A-7-5	13,6	32,77	-	29,0	1,31	6,9	0,11
ST-SM-1002	11	24	65	49	32	17	A-7-5	12,6	25,14		35,55	1,24	4,1	1,2
ST-SP-1002	23	23	54	65	46	19	A-7-5	15,6	28,01	-	32,35	1,41	5,6	0,16
ST-SM-1100	10	16	74	52	33	19	A-7-5	14,0	28,95	-	30,85	1,24	3,5	0,11
ST-SM-1101	8	17	75	44	27	17	A-7-6	11,6	21,2	-	27,55	1,30	3	0,22
ST-SP-1100	21	27	52	38	21	17	A-6	10,8	26,57	1,89	30,27	1,48	4,8	0,17
ST-SP-1102	30	28	42	53	34	19	A-7-5	14,2	23,33	1,54	28,56	1,37	7,3	0,31

Fonte: Elaborado pelo Consórcio TPF-SENER.

Conforme dados acima, os demais segmentos homogêneos, exceto o SH-2 o qual se obteve um solo arenoso, as amostras coletadas e submetidas aos ensaios mostram a presença de solos finos, com matriz principal argilosa ou siltosa, sendo em alguns pontos observado proporcionalmente a mesma quantidade de areia.

Resumidamente, as características granulométricas principais dos solos conforme cada segmento homogêneo são:

- SH-3 Argila siltosa e arenosa (SP-902 e SM-902) e areia argilosa (SP-904);
- SH-4 Argila arenosa (SP-600 e ST-800) com passagem por areia siltosa (ST-801) e silte argiloso (SM-600, 800 e 801);
- SH-5 Argila arenosa;
- SH-6 Silte argilo-arenoso;
- SH-7 Silte argiloso com passagem por silte arenoso (ST-300 e SM-400);
- SH-8 Argila arenosa com passagem por areia siltosa (SP-203) e silte arenoso (SP-204);
- SH-9 Argila silto-arenosa;
- SH-10 Argila arenosa;
- SH-11 Argila siltosa

Majoritariamente as argilas encontradas ao longo do traçado, possuem média plasticidade, com alguns locais de baixa plasticidade como o caso da ST-01, SM-100 e SP-600 respetivamente, e alta plasticidade sendo essas encontradas nas sondagens da série 900 (SM-900 e 901B e SP-903).

Já os siltes se mostraram de baixa plasticidade nas sondagens SP-404, SP-301 e os siltes do SH-6. Nos demais casos, foram observados com uma média plasticidade sendo a maioria encontrado no SH-7 (sondagens da série 300) e SP-203 e 204.

Estes solos não são recomendáveis para uso como subleito considerados como regular a ruim para tal função, pois podem ter um média a alta compressibilidade mesmo compactado, e consequentemente deformabilidade que pode gerar problemas futuros, além de serem considerados solos de drenagem ruim e até impermeáveis, portanto, necessário lançar mão de soluções de engenharia para o uso deste material.

Segundo valores limites da Valec, pode ser usado como corpo de aterro, já que obteve valores de CBR maior que 2% e baixa expansão (<2%), porém, conforme supracitado, deverá ser executado com algumas soluções de drenagem e proteção de taludes.

10 RESULTADOS DOS ENSAIOS SÍSMICOS – ELETRORRESISTIVIDADE

Conforme já informado, nos trechos da Serra do Mar e Serra da Boa Esperança, regiões nas quais não foi possível a execução das sondagens definidas na campanha devido à dificuldade de acesso dos equipamentos de sondagens, onde seria necessário a abertura de grandes picadas em mata nativa para viabilizar a execução, as sondagens foram substituídas pelo ensaio de eletrorresistividade.

Foi definido e executado o ensaio em 9 áreas, sendo 5 na Serra do Mar (áreas 1 a 5) e 4 na Serra da Boa Esperança (áreas 6 a 9), e a seguir será descrita a metodologia utilizada.

A principal finalidade dos trabalhos realizados foi determinar a estratigrafia geológica/geotécnica, com intuito de fornecer informações que poderão contribuir para as eventuais ações futuras de avaliação e gerenciamento do caso.

No levantamento de campo executado, conforme programação prévia, foram realizados perfis geofísicos longitudinais e dois transversais cobrindo toda a área de interesse e cujos resultados serão apresentados na sequência deste relatório.

Os métodos geofísicos são técnicas de rastreamento em superfície, não invasivos e, portanto, não destrutivos, empregados em diversas aplicações, tais como: meio ambiente, geotecnia, engenharia e mineração, assim como na identificação de objetos enterrados e feições geológicas.

Esta metodologia permite avaliar as condições geológicas locais através dos contrastes das propriedades físicas dos materiais de subsuperfície, por exemplo, condutividade ou resistividade elétrica, permissividade dielétrica, magnetismo, densidade etc., e que podem ter como origem as diferenciações litológicas e outras heterogeneidades naturais ou não.

10.1 MÉTODO DE ELETRORRESISTIVIDADE

O método de Eletrorresistividade se baseia no estudo de propriedades elétricas das rochas, sendo, geralmente, a magnitude mais significante a resistividade elétrica (ou sua inversa, a condutividade elétrica).

A resistividade elétrica das rochas, considerando apenas seus minerais constituintes, e da água pura é muito elevada, ou seja, elas são praticamente isolantes elétricos. No entanto, todas as rochas possuem poros e/ou fissuras em proporção maior ou menor que podem estar ocupados total ou parcialmente por eletrólitos (sais dissolvidos), o que resulta, no conjunto, com que essas se comportem como condutores iônicos, de resistividade muito variável conforme o caso. Abaixo é apresentada a variação de resistividade das rochas.

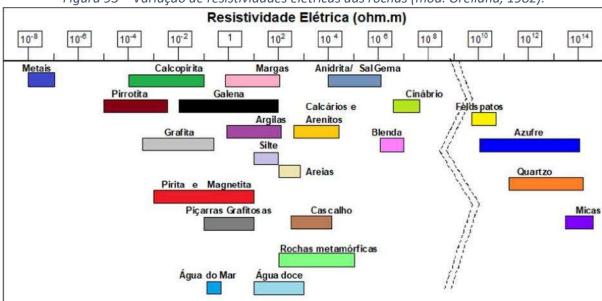


Figura 93 – Variação de resistividades elétricas das rochas (mod. Orellana, 1982).

Fonte: ORELLANA, 1982.

Fundamentalmente, o método geofísico de Eletrorresistividade se fundamenta na injeção de corrente elétrica no solo, nas variações medidas de voltagem (ddp) provocadas pela passagem da corrente e na resistividade elétrica dos materiais de subsuperfície e que é obtida através de cálculos matemáticos. Desta maneira, quando uma corrente elétrica é injetada no solo por meio de um par de eletrodos, os padrões de fluxo subsuperfícial de corrente refletem a resistividade da subsuperfície.

Esses padrões de corrente podem ser mapeados na superfície através de outro par de eletrodos que mede as variações de voltagem. Essas voltagens representam a energia que deve ser despendida para a passagem da corrente através do meio geológico, associadas, portanto, com a resistividade elétrica dos materiais constituintes do terreno.

Na execução de qualquer técnica do método de Eletrorresistividade as variações medidas do potencial elétrico representam a energia que deve ser despendida para a passagem do fluxo de corrente através do meio geológico, associados, portanto, com a resistividade elétrica dos materiais presentes em profundidade, como pode ser observado nos diagramas de quatro eletrodos da figura a seguir.

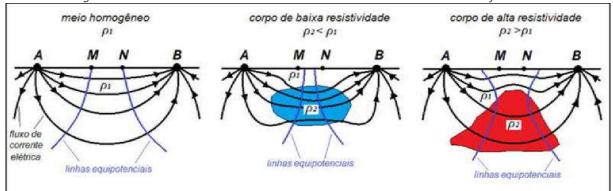


Figura 94 – Fluxo de corrente elétrica em materiais de resistividades diferentes.

10.2 EQUIPAMENTO DE CAMINHAMENTO ELÉTRICO

O Caminhamento Elétrico consiste em se executar uma série de medidas de resistividade aparente na superfície do terreno, com um arranjo fixo de eletrodos de corrente e potencial (AB=MN), ao longo de um perfil (*Figura 95*), constituindo-se numa varredura lateral da área de interesse, com intuito de se investigar a continuidade das feições ou estruturas em subsuperfície.

(Espaçamento entre eletrodos = 5m)

2 3 4 ... 29 30 Local 31 32 ... 57 58 59 60 Equipamento

Figura 95 – Fluxo de corrente elétrica em materiais de resistividades diferentes.

No arranjo dipolo-dipolo, os eletrodos de corrente A e B possuem o mesmo espaçamento dos eletrodos de potencial M e N. De acordo com a *Figura 96*, observa-se que X=AB=MN, sendo que a profundidade de investigação cresce com a separação entre os eletrodos de corrente e potencial (R) e teoricamente corresponde a ½ R.

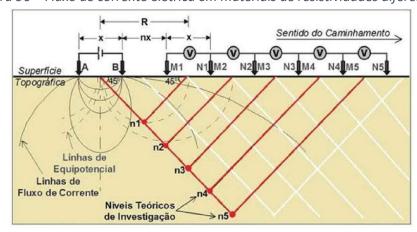


Figura 96 – Fluxo de corrente elétrica em materiais de resistividades diferentes.

As medidas que são feitas a várias profundidades de investigação, no caso, correspondem aos níveis n= 1, 2, 3, 4 e 5 e são atribuídas na intersecção das linhas que partem a 45° dos centros AB e MN. A cada estação os dois dipolos são deslocados de uma distância igual a X, e os dados obtidos são plotados nas posições n= 1, 2, 3, 4... e interpolados, gerando uma pseudosseção de resistividade aparente, onde

a interpretação de estruturas é feita de forma qualitativa, posteriormente modelados quantitativamente através de programas específicos.

O resultado deste rastreamento lateral origina, assim, as chamadas pseudosseções, onde são apresentados os valores plotados das resistividades elétricas aparentes medidas, tanto na sua magnitude, como na sua posição horizontal (X) e em profundidade (Z).

Seção LO3

Raismity continue action

Faire Co

Figura 97 – Exemplo da Seção de Eletrorresistividade obtida por caminhamento elétrico.

O resistivímetro, ou tomógrafo elétrico, utilizado para a obtenção dos dados de resistividade elétrica em campo foi o modelo WDJD-4 da BTSK *Geophysical Exploration Instrument*, o qual se constitui em uma fonte de corrente de até 56 A e tensão máxima de 1.100 Volts de saída, com potência máxima de 6.600 W, proporcionando leituras digitais da corrente transmitida ao solo e do potencial resultante conforme figura a seguir.

Figura 98 – Sistema de Resistividade OhmMapper.

Fonte: Geometrics.

O sistema completo para medições de resistividade elétrica também é composto por fios, cabos, carretilhas, bateria e eletrodos metálicos para injeção de corrente no solo.

Assim, podem ser observadas no quadro a seguir, as especificações técnicas do Sistema de Eletrorresistividade do modelo WDJD-4 da BTSK *Geophysical Exploration Instrument*, empregado na aquisição dos dados de resistividade elétrica no levantamento geofísico aqui apresentado:

Figura 99 – Especificações Técnicas do Sistema de Eletrorresistividade empregado.

	Receiving			
Voltage ± 6 V,±1 % ± 1LSB				
Measurement accuracy	if Vp≥10mV, \pm 5‰ \pm 1LSB; if Vp < 10mV, \pm 1% \pm 1LSB; if Vp≥10mV, \pm 5‰ \pm 1LSB; if Vp < 10mV, \pm 1% \pm 1LSB			
Input impedance	≥50ΜΩ			
Measurement precision of apparent polarizability	± 1%± 1L5B			
SP compensation range	± 10V			
Current	6 A,±1% ± 1 LSB			
Measurement accuracy	if IP≥10mA, ± 5‰± 1LSB; if IP<10mA,± 1%± 1LSB			
Suppression	over 90Db for 50Hz industrial frequency (common mode interference or differential mode interference)			
	Transmitting			
Maximum transmitting power	±6600W			
Maximum voltage	±1100V			
Maximum current	±56A (when voltage ≤900V)			
Pulse width	1~60s, duty cycle is 1:1			
	Others			
Working temperature	-10°C~+50°C (Environmental), 95 %RH			
Storage temperature	-20°C~+50°C (Environmental)			
Power supply	internal 12V 9Ah rechargeable battery , lasts for 30 hours (or 12V external power supply)			
Overall current	≤55mA			
Weight	≤4.5Kg			
Dimension (LxWxH)	270mmx246mmx175mm			

Fonte: BTSK.

10.3 LEVANTAMENTO DE CAMPO

Para a investigação da área são realizadas as seções previamente definidas pela técnica de Caminhamentos Elétricos (CEs), com comprimentos de 300 m, sendo seções contínuas ao longo do eixo longitudinal principal da área e 2 seções transversais ao eixo principal, estas duas seções localizadas no emboque dos túneis a serem implantados.

A partir da plotagem das seções de campo, foram obtidas as coordenadas de posicionamento dos pontos iniciais e finais dos perfis de Caminhamentos Elétricos executados na área investigada.

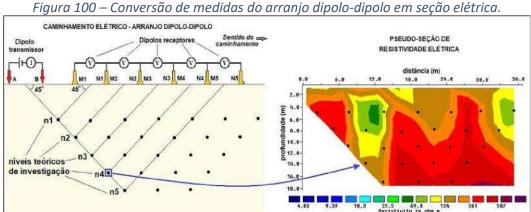
É importante destacar que muitos perfis geofísicos foram executados de acordo com a acessibilidade encontrada em campo e de acordo com estaqueamento feito para obtenção dos perfis topográficos de cada linha de eletrorresistividade e orientação do trajeto em campo.

Os procedimentos de aquisição de dados de resistividade elétrica nos perfis realizados em campo para a realização dos Caminhamentos Elétricos na área investigada foram subdivididos em:

- 4. Cravar os eletrodos no solo, aprofundando aproximadamente 15 cm;
- 5. Estender os cabos multi-condutores e conectar os eletrodos;
- 6. Conectar os cabos no equipamento transmissor de corrente (resistivímetro ou tomógrafo elétrico);
- 7. Ajustar o módulo comutador de eletrodos (switcher);
- 8. Testar as conexões no equipamento e iniciar a aquisição.

Após a montagem completa dos arranjos dos Caminhamentos, o princípio de funcionamento do método se desenvolveu da seguinte forma:

- Uma corrente elétrica foi transmitida entre os dois eletrodos aterrados;
- A tensão (ddp) foi medida entre os eletrodos de potencial, sendo registrada na memória interna do equipamento, o que permitiu, posteriormente, o cálculo dos valores de resistividade elétrica do meio numa determinada profundidade;
- A injeção de corrente foi movida automaticamente pelo equipamento para outro ponto através do módulo comutador e uma nova leitura foi iniciada;
- O processo anterior foi repetido em todos os níveis de investigação até o término do comprimento estabelecido para o perfil.



10.4 PROCESSAMENTO DE DADOS

As leituras de campo referentes à corrente injetada no solo (i), ao potencial elétrico medido (V) e das constantes geométricas do arranjo de Eletrorresistividade (K) foram armazenadas automaticamente na memória interna do equipamento, sendo posteriormente lançadas em programa específico de processamento de dados para cálculo da resistividade elétrica de subsuperfície até os 19 níveis máximos de amostragem que permite o equipamento WDJD-4.

Assim, numa segunda etapa, todos os dados obtidos e formatados, oriundo dos perfis executados, foram descarregados e tratados pelo programa de inversão ZONDRES2D, versão 5.2, de onde se obteve o imageamento das variações laterais e em profundidade da resistividade elétrica.

Desta forma, a rotina de processamento dos valores obtidos pelos Caminhamentos Elétricos se configura pela inversão dos dados de campo em dados de resistividade aparente, os quais são plotados nas pseudosseções conforme seus posicionamentos e profundidades, como pode ser visto no esquema da figura abaixo.

Em conclusão a esta etapa de interpretação dos dados obtidos no levantamento geofísico, as regiões que apresentam variações da resistividade elétrica em intervalos de valores comuns foram correlacionadas às feições geológicas que poderiam estar presentes em subsuperfície, sendo elaborados modelos geoelétricos conforme a interpretação dessas feições observadas.

10.5 RESULTADOS

Em levantamentos pelo método de Eletrorresistividade é comum encontrar variações significativas nos valores de resistividade elétrica relacionadas aos contrastes litológicos existentes no subsolo. Assim, os valores de resistividade elétrica são representados através de uma escala cromática, sendo que cada seção de Caminhamento Elétrico Capacitivo, possui sua escala própria associada aos materiais geológicos presentes no perfil realizado.

Através desta escala cromática de valores, os resultados são apresentados através de uma interpretação da seção de eletrorresistividade de acordo com os valores de correspondência da resistividade dos materiais geológicos conhecidos.

Para interpretação dos dados de eletrorresistividade, foi utilizada a classificação de Vaz (1996) adaptada ao levantamento geofísico, com as seguintes classificações para as áreas onde ocorreram o levantamento geofísico:

- **Rocha**: Representado por blocos rochosos, matacões ou rocha sã. Alta resistência à escavação ou perfuração.
- Rocha Alterada: Horizontes compostos por rochas fraturadas e intemperizadas; podem apresentar características mecânicas de rochas intemperizadas duras ou moles.
- Solo de Alteração Saprólitos: Solo com composição heterogênea, compostos por materiais arenosos a pedregulhos. Em processos de intemperismo incipiente. Pode ocorrer fragmentos de rochas e/ou zonas de rochas cataclásticas não coesivas.
- Solo Argilo Arenoso: Composto essencialmente por uma matriz heterogênea de argila e areia. Pode ocorrer fragmentos de rocha alterada, e/ou material coluvionar.

Os valores das resistividades elétricas estão condicionados e associados à natureza, às características e disposição das litologias ao longo do perfil geofísico e à geologia local, sendo esta interpretação de acordo com valores das resistividades obtidas e característica física do material em resposta às correntes elétricas submetidas e resposta da resistividade obtida ao longo do perfil geofísico.

Na figura a seguir está demonstrada a associação das resistividades com a classificação adotada, tendo o trabalho de Vaz (1996) com referência para interpretações.

Figura 101 – Exemplo de escala cromática de valores de resistividade elétrica.

Fonte: Vaz (1996).

Desta maneira, as interpretações das seções de resistividade obtidas se deram através da avaliação das porções com resistividades elétricas correlacionadas à determinadas formações litológicas e, consequente, determinação de suas conformações, o que permitiu estabelecer a subdivisão dos compartimentos geofísicos presentes.

Neste contexto, os valores de resistividade e suas respectivas interpretações adotadas neste relatório se enquadram especificamente ao intervalo de valores que foram encontrados ao longo dos perfis individuais de campo, servindo tão somente como parâmetro orientativo a outro local que possua condições de subsuperfície ou geologia semelhante.

Na sequência, portanto, são apresentados os resultados obtidos para os Caminhamentos Elétricos (CEs) realizados na área investigada, constando as interpretações referentes às feições geofísicas definidas de acordo aos valores medidos de resistividade elétrica. Assim, nos resultados expressos a seguir, constam duas figuras para cada linha realizada, sendo subdivididas da seguinte forma:

- a) seção em nível superior imagem 2D representativa das variações de resistividades elétricas ao longo do perfil (seção geoelétrica);
- b) seção em nível inferior imagem 2D indicativa do modelo geoelétrico (seção interpretada) constando as feições de subsuperfície interpretadas para o local.

Deste modo, abaixo de todas as imagens dos modelos geoelétricos interpretados, são visualizadas as faixas de variações de resistividade elétrica obtidas em cada seção e agrupadas de acordo com o seguinte diagrama:

Figura 102 — Diagrama dos resultados obtidos através das faixas de variações de resistividade elétrica.

Fonte: Vaz (1996).

10.5.1 ÁREA 1

Abaixo serão apresentados os resultados obtidos para a Área 1.

Sondagem substituída: SM-104.

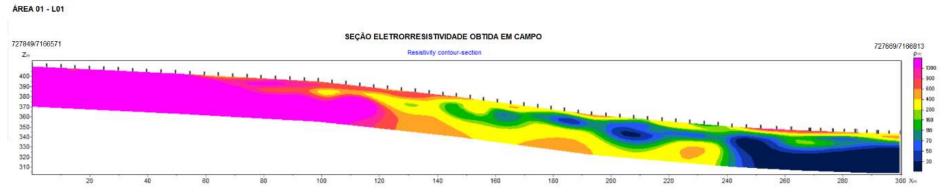
Google Earth

The state of the

Figura 103 – Localização das seções de eletrorresistividade executadas na Área 1.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 36 – Coordenadas inicial e final das seções levantadas na Área 1.


SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	C		
	∥E	S	E	S	Comprimento (m		
ÁREA 1							
L01	727849	7166571	727669	7166813	300		
L02	727669	7166813	727506	7167064	300		
L03	727506	7167064	727360	7167332	300		
L04	727360	7167332	727221	7167601	300		
L05	727221	7167601	726997	7167799	300		
L06	726997	7167799	726802	7168032	300		
L07-Emboque	726711	7167955	726936	7168126	300		
L08-Emboque	727647	7166609	727759	7166892	300		
	47			Total:	2400		

Fonte: Elaborado pelo Consórcio TPF-SENER.

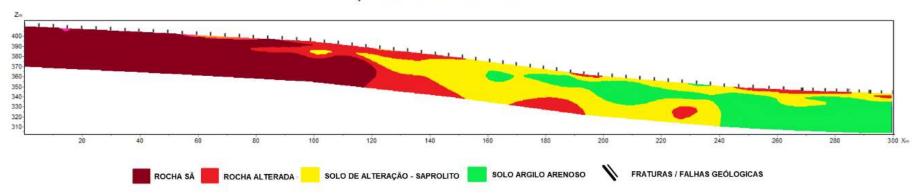
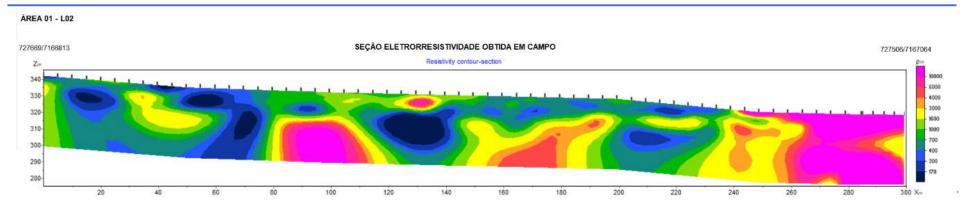
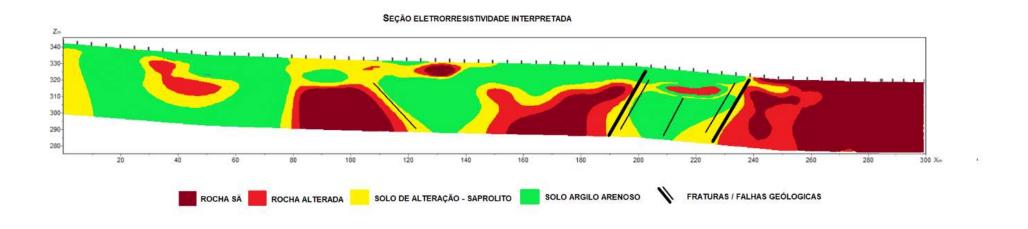
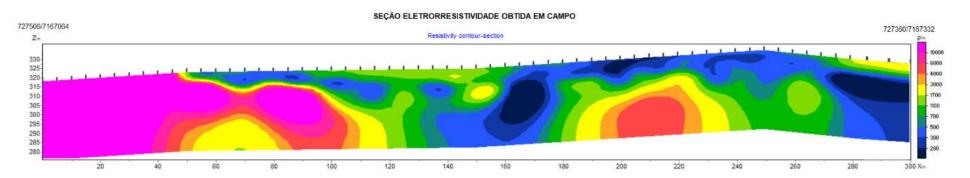
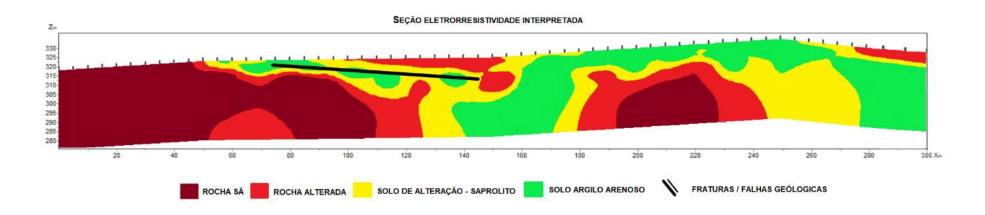


Figura 104 – Seções de caminhamento elétrico e modelos geoelétricos - Área 1.

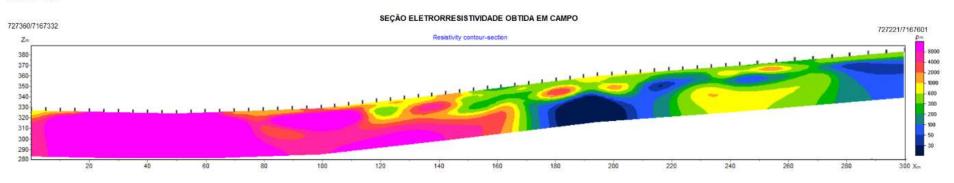

SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

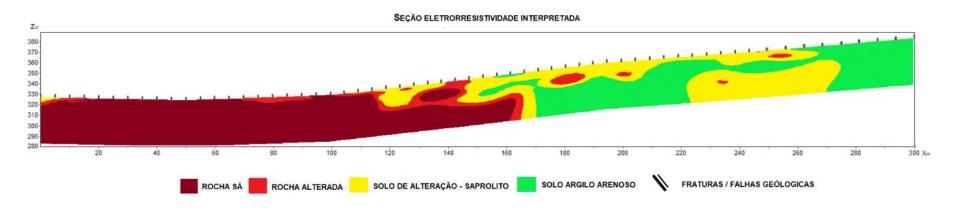


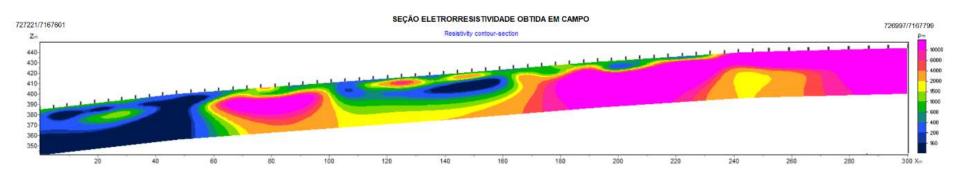


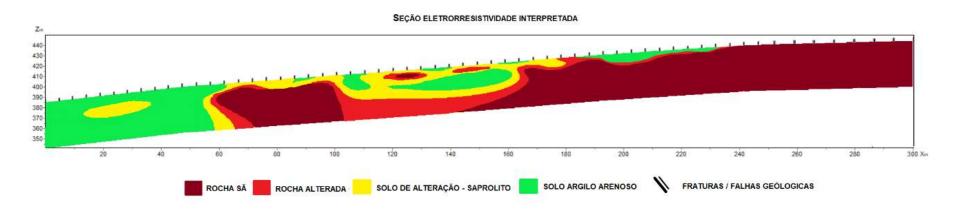


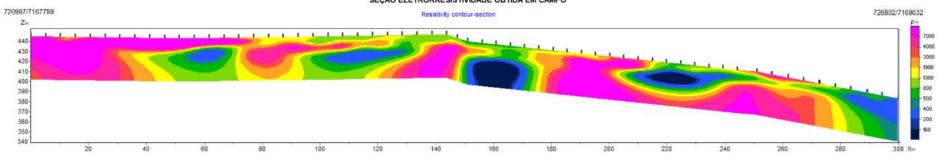
ÅREA 01 - L03

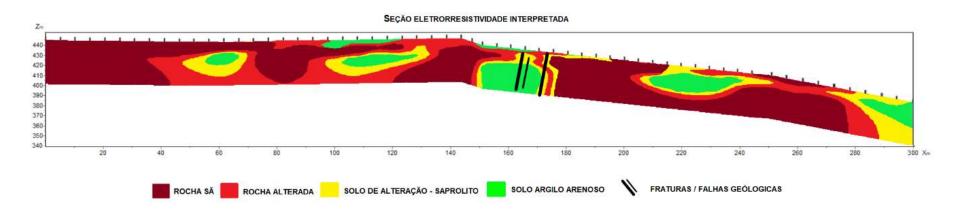




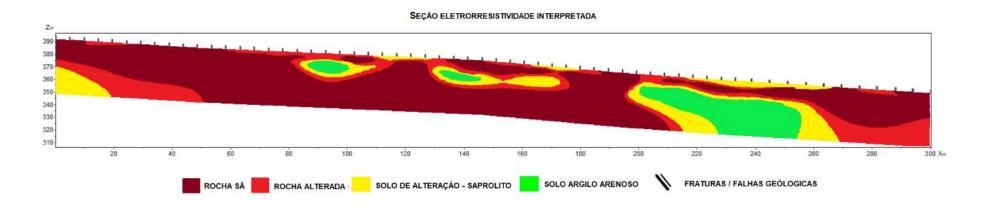




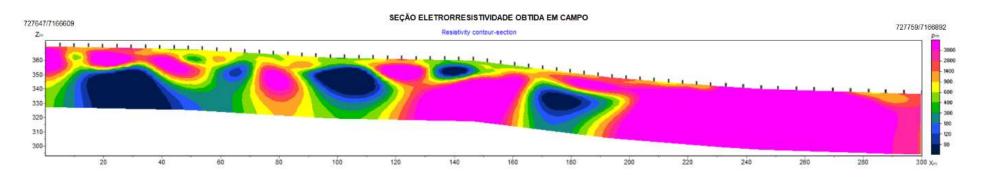


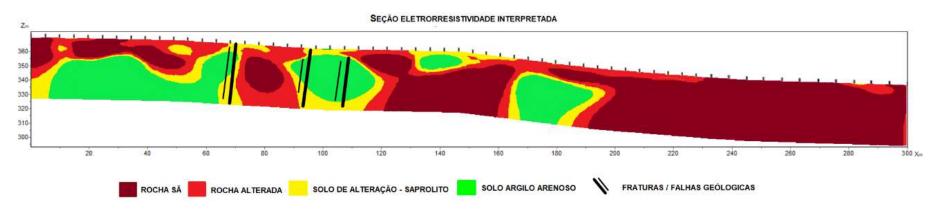


SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO



AREA 01 - L07 Emboque


SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO 726936/7168126 726711/7167955 5000 380 3000 370-2000 360 1400 350 900 600 340 400 330-300 320-

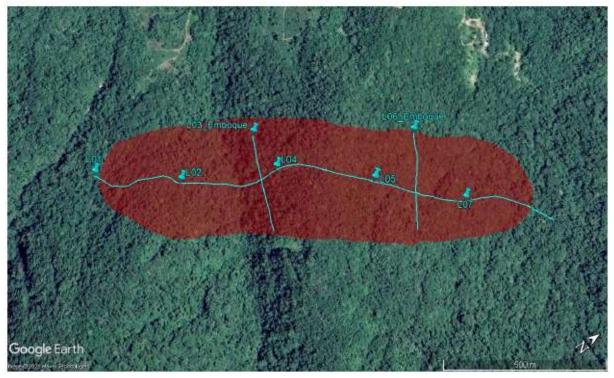


ÁREA 01 - L08 Emboque

Fonte: Elaborado pelo Consórcio TPF-SENER.

A Área 1 está inserida em um contexto geológico de rochas graníticas e gnáissicas, com ocorrências de zonas de fraturas e falhas, podendo ocorrer regiões com rochas miloníticas e cataclásticas. Nas seções geofísicas adquiridas da área, o perfil geológico é composto por formações com altas resistividades, característica de rochas sã e alteradas, com intervalos de zonas de solo de alteração.

Nas seções LO3, LO6 e LO8-Emboque ocorrem feições de zonas de falhas e/ou fraturas. Nas zonas de ocorrência de solo de alteração e solo argilo arenoso nas seções LO3, LO4 e LO5, estas podem estar associadas a zonas de cisalhamento regional, com intenso fraturamento de rochas, assim resultando em zonas de menor resistividade em detrimento ao perfil geológico predominantemente de alta resistividade.



10.5.2 ÁREA 2

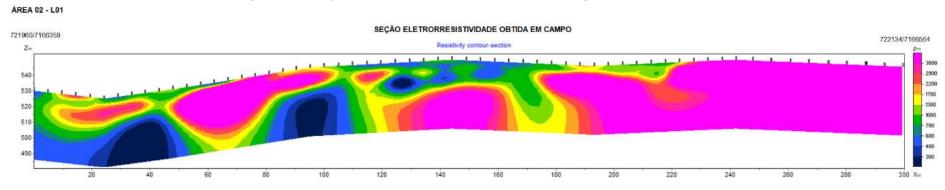
Abaixo serão apresentados os resultados obtidos para a Área 2.

Sondagens substituídas: SM-105 e SM-106.

Figura 105 – Localização das seções de eletrorresistividade executadas na Área 2.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 37 – Coordenadas inicial e final das seções levantadas na Área 2.


SEÇÕES	Coordenada Inicial (22J)		Coordenada Final (22J)					
	E	S	E	S	Comprimento (m)			
	ÁREA 2							
L01	721960	7166359	722134	7166564	300			
L02	722134	7166564	722270	7166822	300			
L03-Emboque	722135	7166824	722419	7166714	300			
L04	722270	7166822	722470	7167042	300			
L05	722470	7167042	722691	7167248	300			
L06-Emboque	722421	7167232	722665	7167069	300			
L07	722691	7167248	722904	7167443	300			
				Total:	2100			

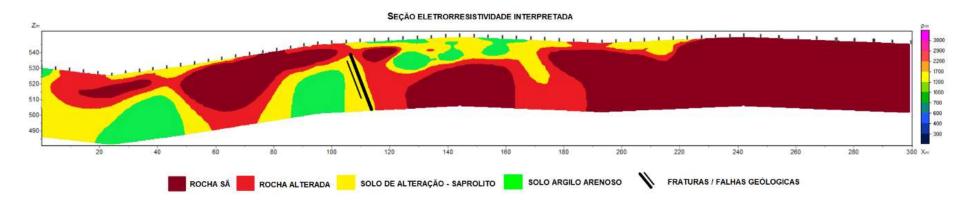
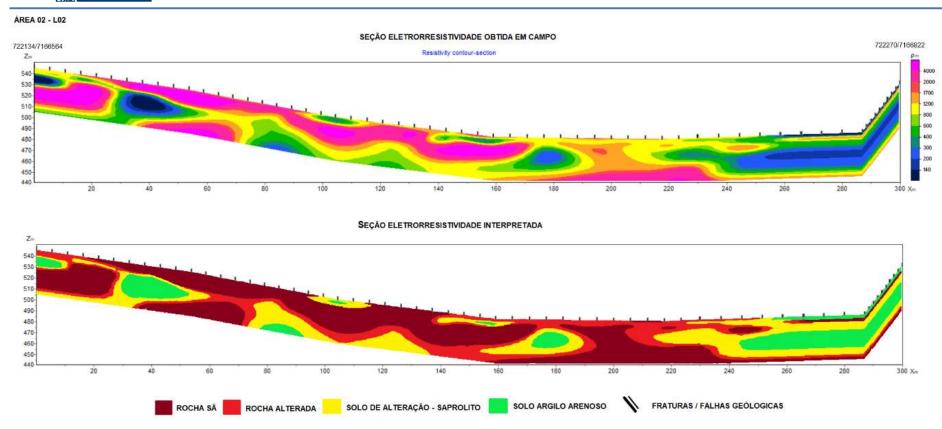
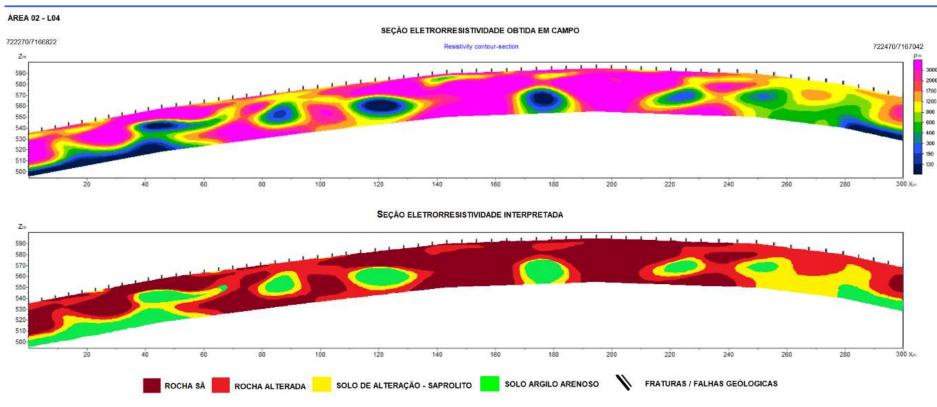
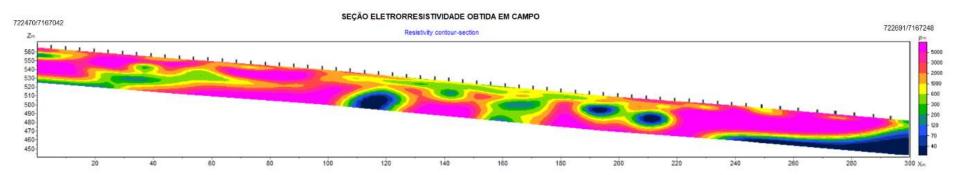
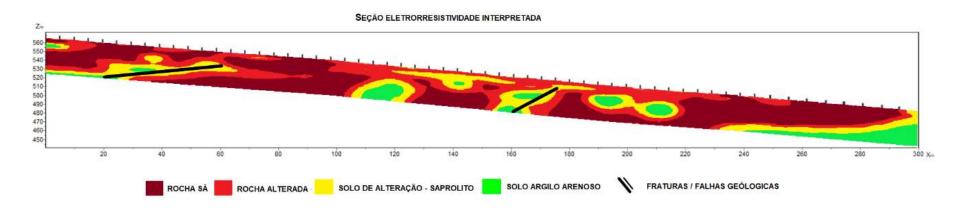

Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 106 – Seções de caminhamento elétrico e modelos geoelétricos - Área 2.

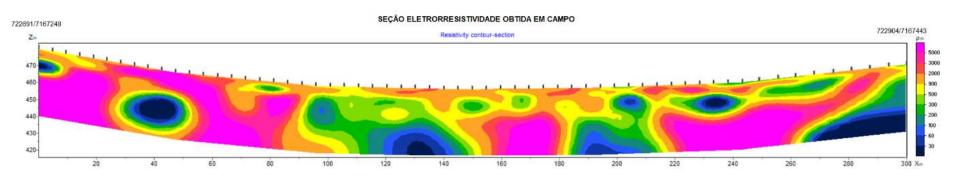


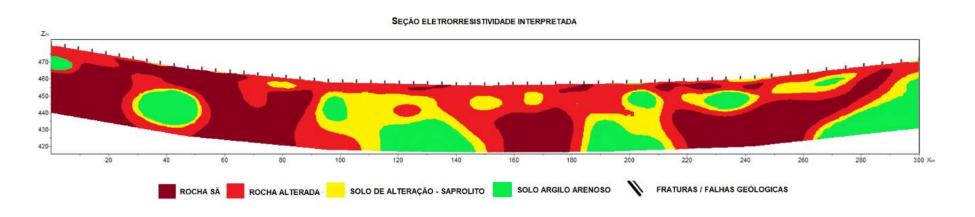




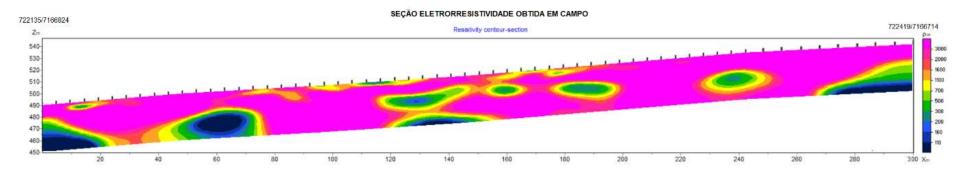


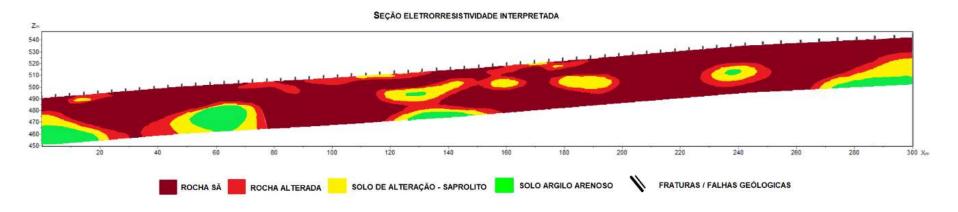
ÁREA 02 - L05



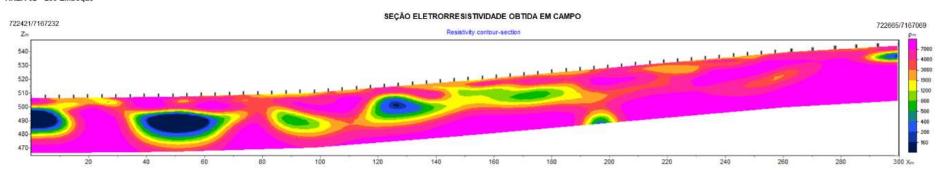


AREA 02 - L07





ÁREA 02 - L03 Emboque



ÁREA 02 - L06 Emboque

SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA Zm 530-520 490 20 100 140 200 220 240 260 280 300 X_m SOLO DE ALTERAÇÃO - SAPROLITO SOLO ARGILO ARENOSO FRATURAS / FALHAS GEÓLOGICAS ROCHA ALTERADA

Fonte: Elaborado pelo Consórcio TPF-SENER.

O perfil geológico predominante na Área 2 é de ocorrência de rochas sã e alterada, relacionadas a interpretação de ocorrência de rochas graníticas com zonas de deformação. Estas zonas de deformação podem estar associadas à ocorrência de fratura e ou falhas geológicas, como interpretadas nas seções LO1 e LO5.

Feições anômalas de baixa resistividade, com geometria arredondada, são interpretadas como solos de alteração e solo argilo arenoso, podendo estar associadas ao intemperismo diferenciado no corpo granítico devido a sua variação composicional química da formação destes granitoides.

10.5.3 ÁREA 3

Abaixo serão apresentados os resultados obtidos para a Área 3.

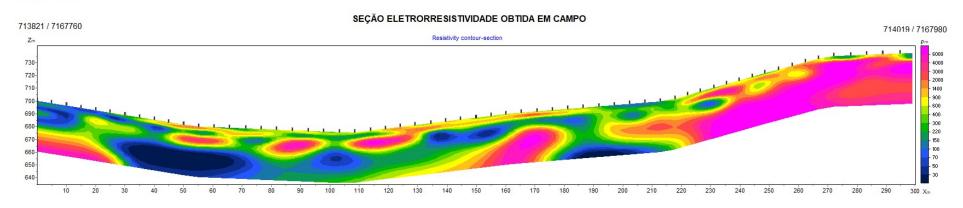
Sondagens substituídas: SM-107, SM-108, SM-109 E SM-110.

Figura 107 – Localização das seções de eletrorresistividade executadas na Área 3.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 38 – Coordenadas inicial e final das seções levantadas na Área 3.

SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	Communication and a (ma)
	E	S	E	S	Comprimento (m
		ÁREA 3		•	
L01	713821	7167760	714019	7167980	300
L02	714019	7167980	714264	7168153	300
L03	714264	7168153	714522	7168298	300
L04	714522	7168298	714812	7168356	300
L05-Emboque	714003	7167736	713826	7167975	300
L06	714812	7168356	715097	7168269	300
L07	715097	7168269	715325	7168076	300
L08	715325	7168076	715540	7167863	300
L09-Emboque	715487	7168070	715194	7167970	300
				Total:	2700


Fonte: Elaborado pelo Consórcio TPF-SENER.

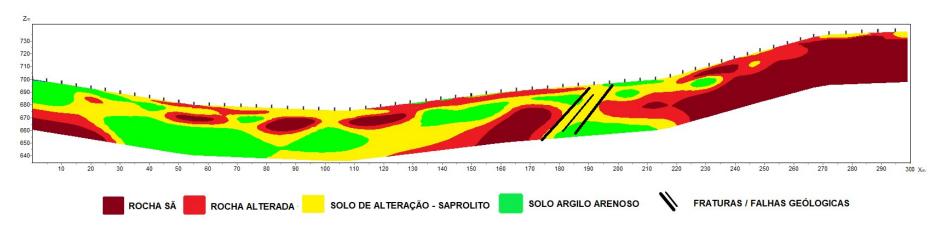
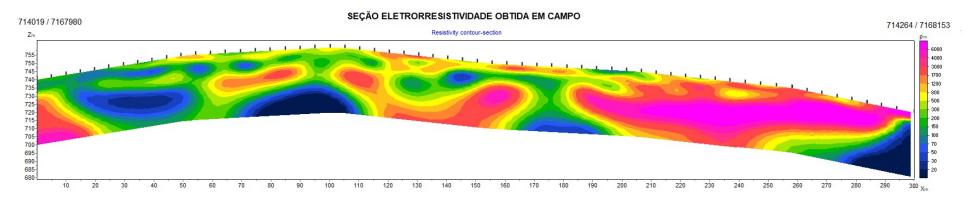
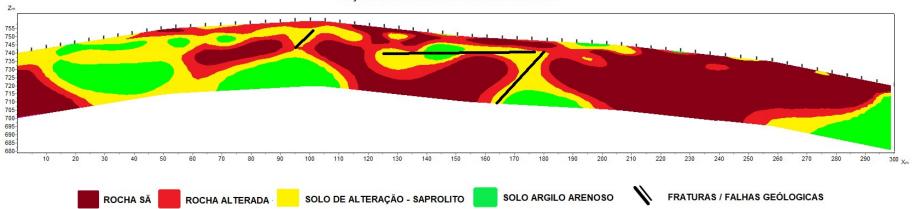


Figura 108 – Seções de caminhamento elétrico e modelos geoelétricos – Área 3.

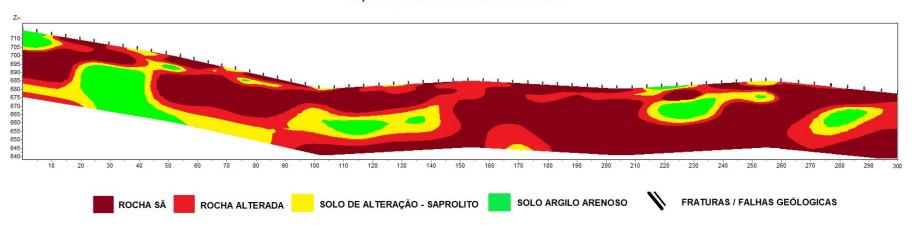
ÁREA 03 - L01


SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA



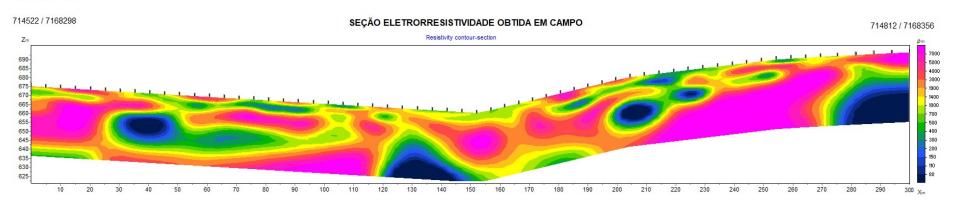
ÁREA 03 - L02

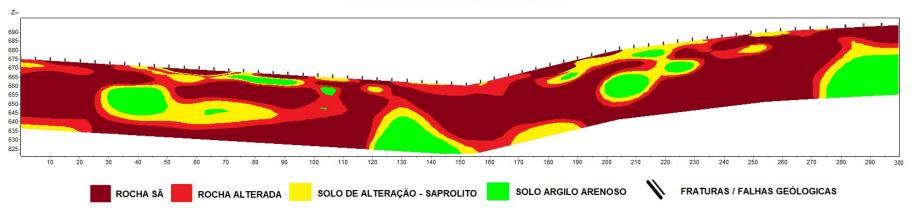
SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA



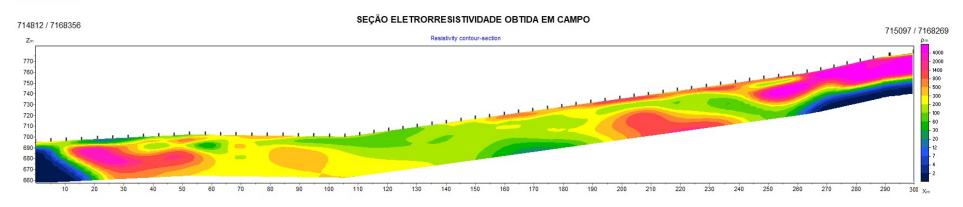
ÁREA 03 - L03

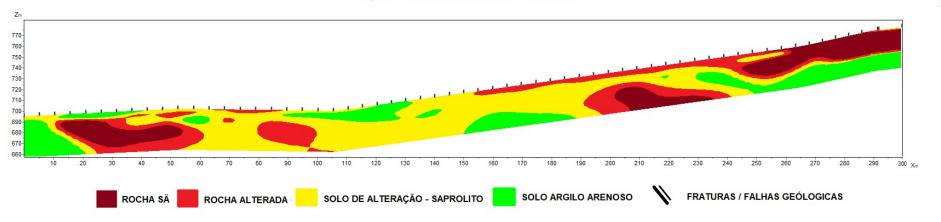
SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO 714264 / 7168153 714522 / 7168298 Resistivity contour-section - 6000 - 1800 - 1200 685 - 300 - 190 - 130 - 90 - 60 - 40 660 655-


SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

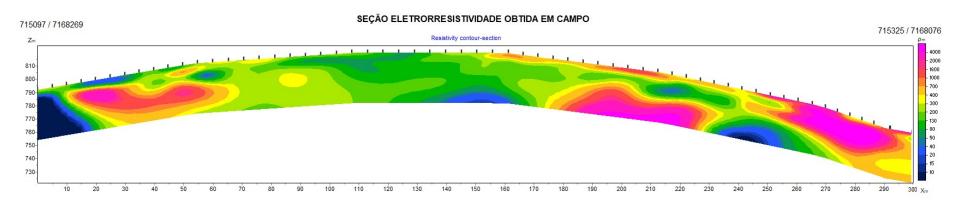


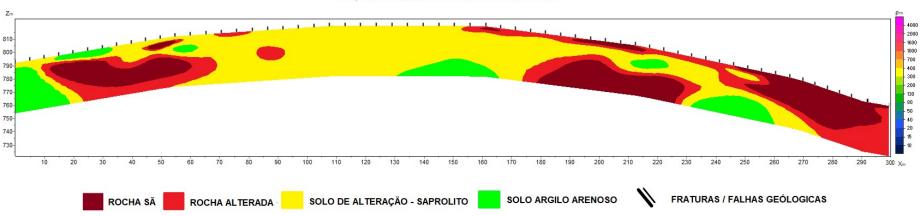
ÁREA 03 - L04


SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

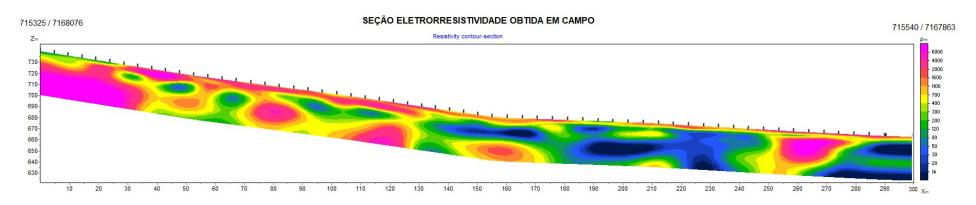


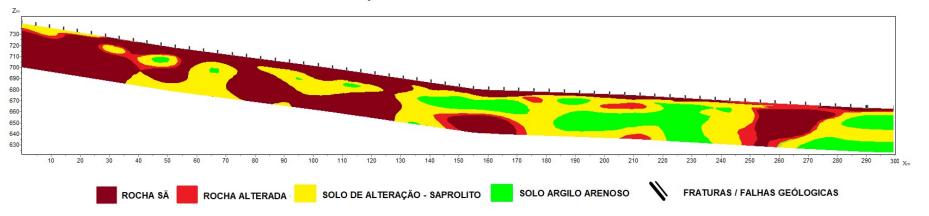
ÁREA 03 - L06


SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

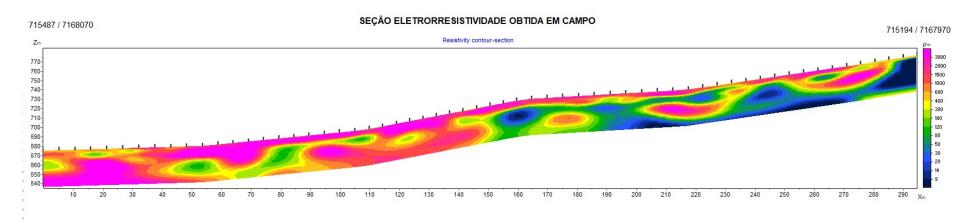


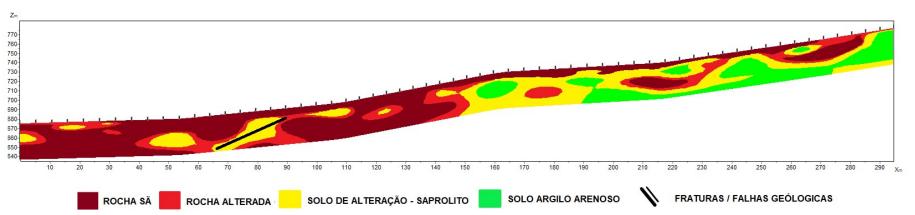
ÁREA 03 - L07





ÁREA 03 - L08





ÁREA 03 - L09 Emboque

SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

A Área 3 está inserida em um contexto geológico de contato entre as rochas gnáissicas e granitos, com forte influência de zonas de falhamentos e fraturamentos ao longo dos maciços rochosos.

As indicações de rochas sã e alterada ao longo das seções de eletrorresistividade obtidas ocorrem de forma descontínua. Esta irregularidade pode estar refletindo a anisotropia composicional (bandamentos) e estrutural das rochas gnáissicas e graníticas, formando horizontes de solos com resistências variáveis ao longo das seções, de acordo com a composição mineralógica dos bandamentos composicionais.

A influência regional de zonas de falhamento podem ocasionar ocorrência de rochas cataclásticas e miloníticas. Estas rochas cataclásticas são compostas por minerais de granulação fina a média, compostas por fragmentos de rochas e materiais arenosos, produzindo zonas de resistividade elétrica compatíveis a solos de alteração (saprólitos) nas seções geofísicas. Nas zonas indicadas com solo de alteração podem ocorrer estas zonas de rochas cataclásticas e miloníticas, apresentado uma resistência maior a desmonte e perfuração, comparados a solos de alteração de rochas gnáissicas e graníticas adjacentes dentro dos mesmos horizontes de interpretação e classificação.

Devido as características geológicas locais, com anisotropias texturais das rochas, recomenda-se considerar os solos de alteração (saprólitos) de resistência média a forte em projetos de desmonte e perfuração, podendo ocorrer estas zonas de maior resistência devido não somente presença de rochas cataclásticas, mas também blocos rochosos e/ou outras formações texturais de solos e rochas mais resistentes.

Os solos classificados com silto arenoso, devido as suas características heterogêneas, produzem zonas de resistividade elétrica baixas, características de zonas de presença com materiais argilosos e solos residuais saturados. Nestas zonas de classificação, devido as características geomorfológicas do local, com relevos montanhosos e escarpado, podem ocorrer zonas de deposição de colúvios, sendo estes depósitos de solos e fragmentos de rochas trazidos das zonas mais altas.

10.5.4 ÁREA 4

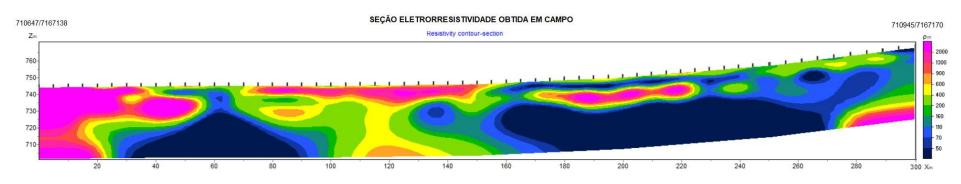
Abaixo serão apresentados os resultados obtidos para a Área 4.

Sondagens substituídas: SM-111, SM-112 e SM-113.

Figura 109 – Localização das seções de eletrorresistividade executadas na Área 4.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 39 – Coordenadas inicial e final das seções levantadas na Área 4.


SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	Campuino anta (m)		
	E	S	E	S	Comprimento (m)		
	ÁREA 4						
L01	710647	7167138	710945	7167170	300		
L02	710945	7167170	711243	7167207	300		
L03	711243	7167207	711543	7167249	300		
L04	711543	7167249	711846	7167275	300		
L05	711846	7167275	712142	7167325	300		
L06	712142	7167325	712430	7167323	300		
L07-Emboque	710859	7167305	710946	7167017	300		
L08-Emboque	712073	7167471	712206	7167209	300		
	-			Total:	2400		

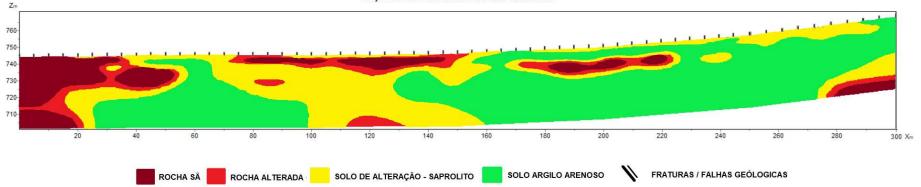
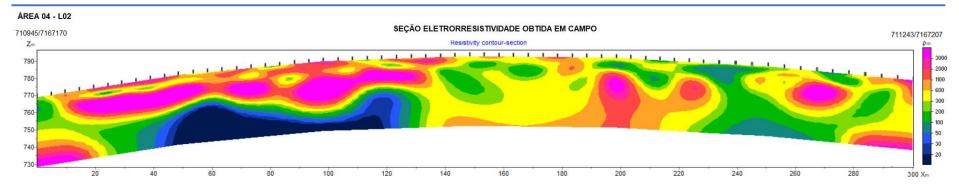
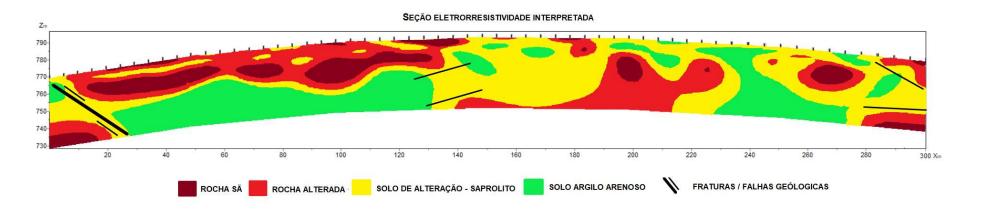
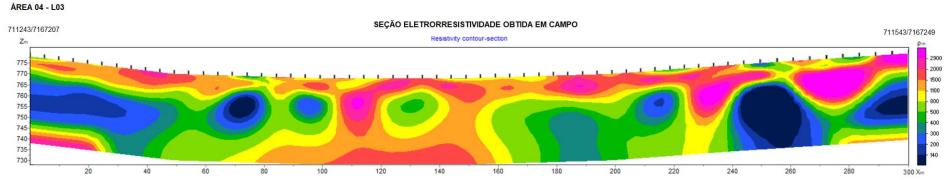


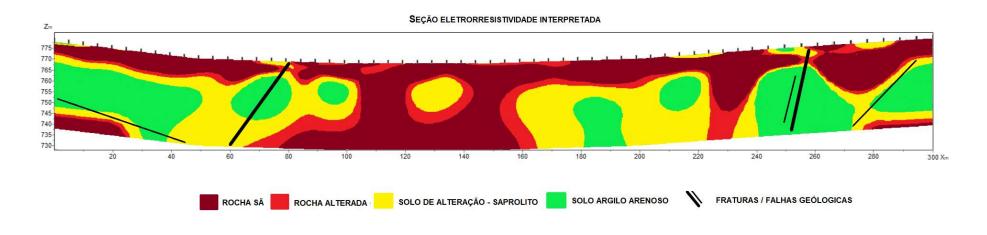
Figura 110 – Seções de caminhamento elétrico e modelos geoelétricos – Área 4.

ÁREA 04 - L01

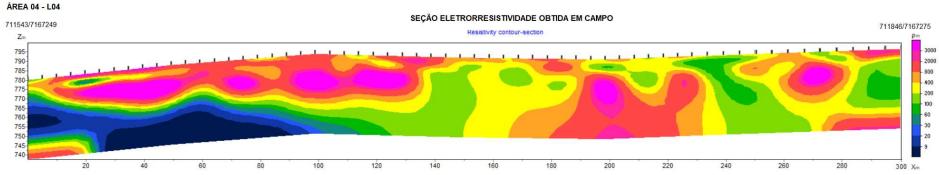


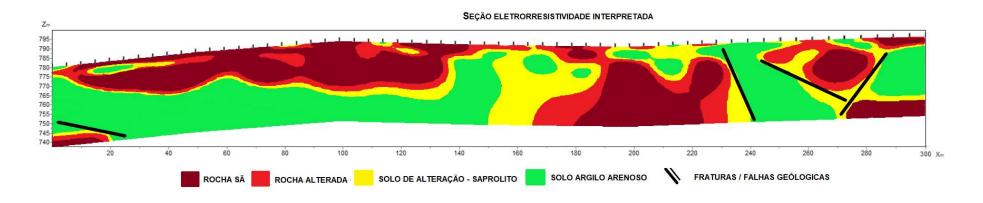


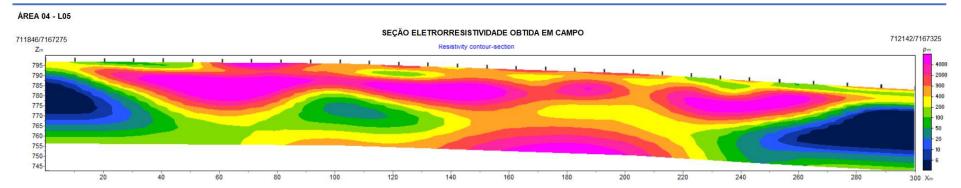


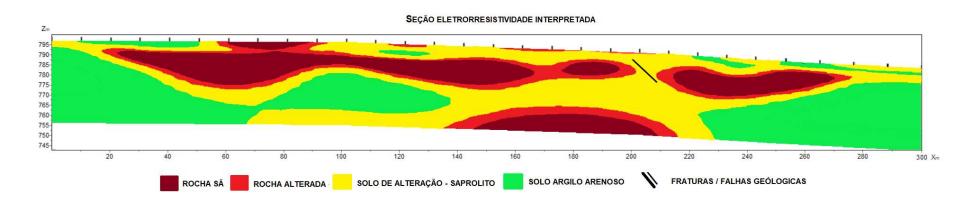


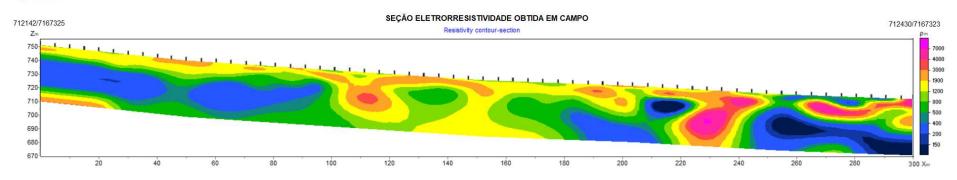
SENER

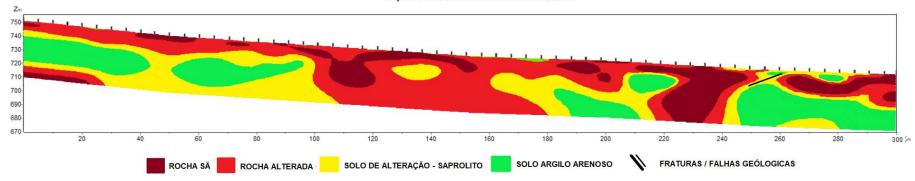


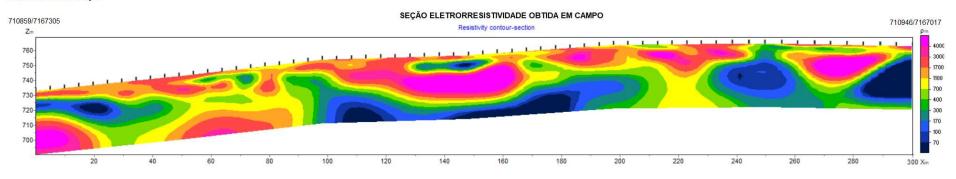


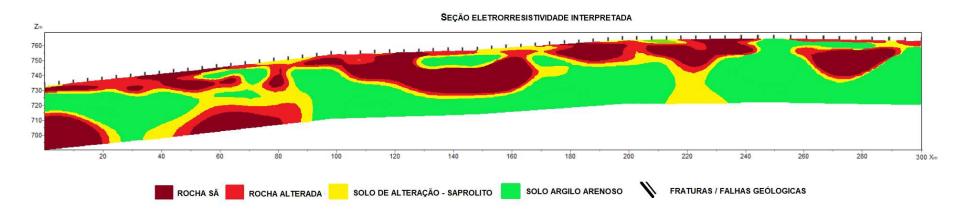




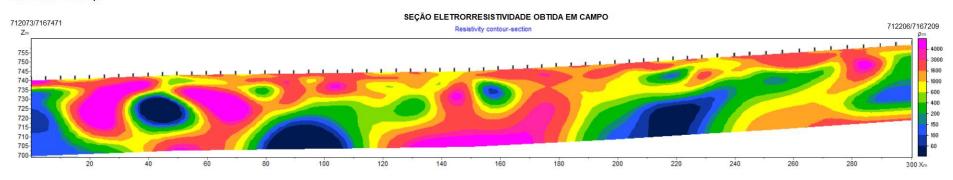


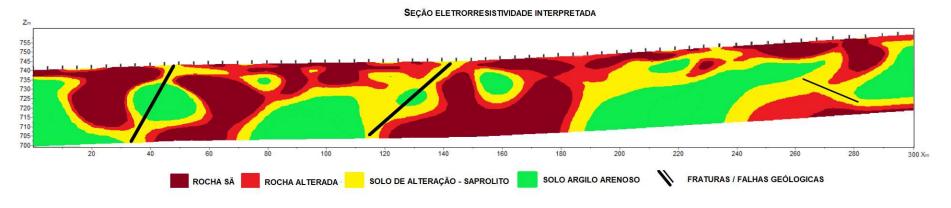






ÁREA 04 - L07 Emboque





ÁREA 04 - L08 Emboque

As seções geofísicas da Área 4 apresentaram padrão de ocorrência de formações rochosas não contínuas, com blocos e matacões dispersos em meio a uma matriz de solos de alteração e argilo arenoso. Essa característica pode estar relacionada à maior ocorrência de zonas de fraturas, estas interpretadas nas seções geofísicas LO2, LO3, LO4 e LO7-Emboque.

Essa ocorrência de maior faturamento pode produzir maior cominuição rochosa e dos sedimentos, ocasionando zonas de resistividade associados a solos de alteração (saprólitos). Porém, nestas zonas de baixa resistividade, podem ocorrer blocos e matacões rochosos que, devido a interpolação dos dados na etapa de processamento geofísico, não foram identificados.

10.5.5 ÁREA 5

Abaixo serão apresentados os resultados obtidos para a Área 5.

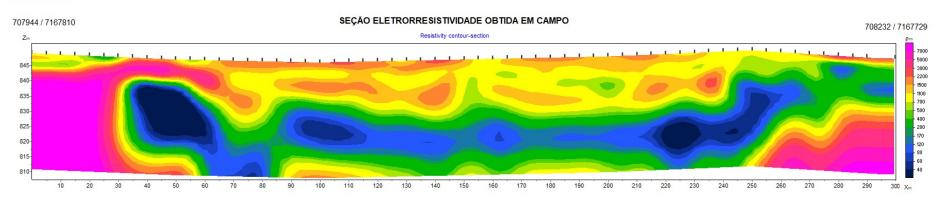
Sondagens substituídas: SM-114 e SM-115.

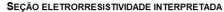
Google Earth

Figura 111 – Localização das seções de eletrorresistividade executadas na Área 5.

Fonte: Elaborado pelo Consórcio TPF-SENER.

Tabela 40 – Coordenadas inicial e final das seções levantadas na Área 5.


SEÇÕES	Coordenada Inicial (22J)		Coordenada Final (22J)		Communication (ma)
SEÇUES	E	S	E	S	Comprimento (m)
	***	ÁREA 5		- 20	
L01	707944	7167810	708232	7167729	300
L02	708232	7167729	708528	7167731	300
L03	708528	7167731	708826	7167696	300
L04	708826	7167696	709120	7167657	300
L05	709120	7167657	709415	7167644	300
L06-Emboque	709219	7167822	709274	7167543	300
L07-Emboque	708114	7167608	707973	7167872	300
				Total:	2100



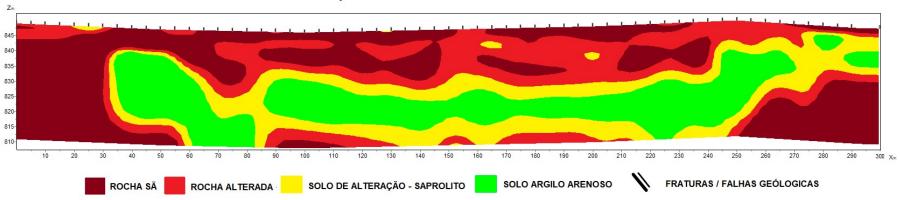
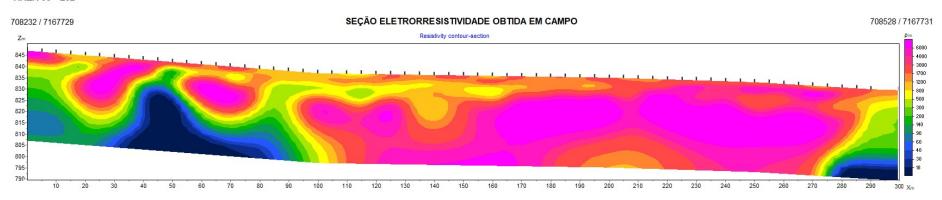
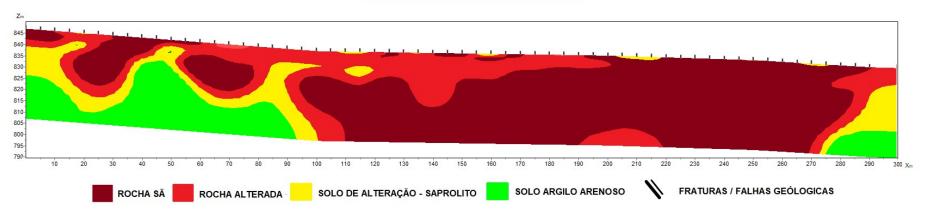
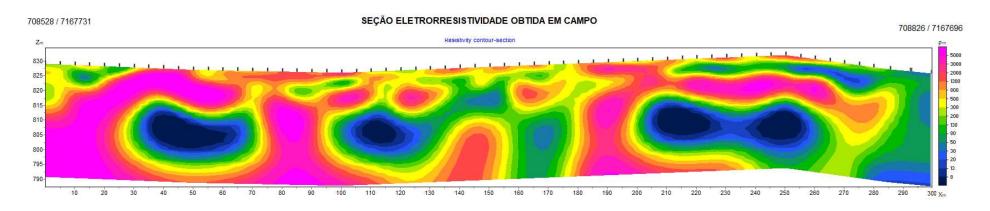


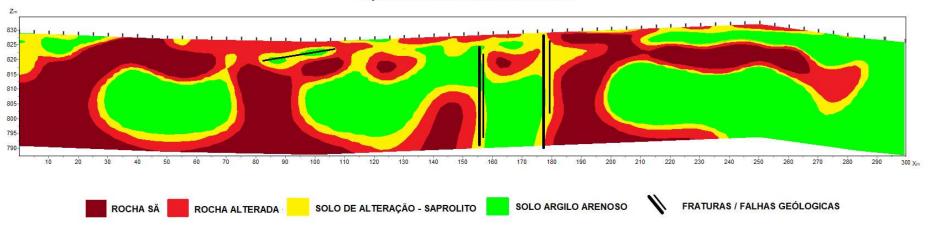
Figura 112 – Seções de caminhamento elétrico e modelos geoelétricos – Área 5.

AREA 05 - L01

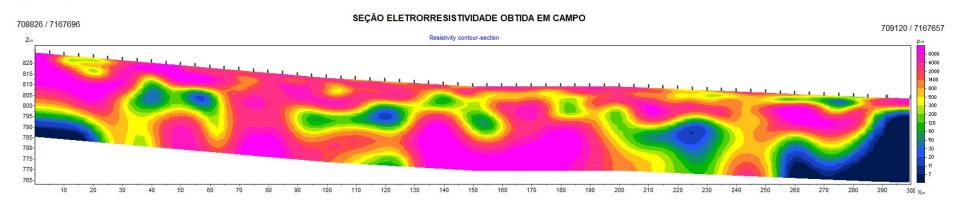


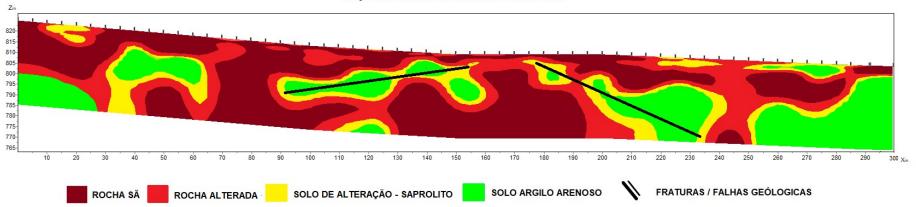




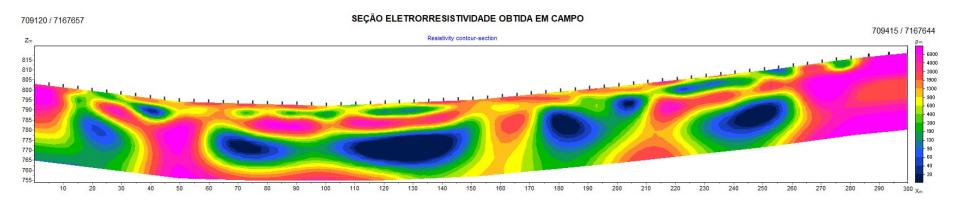


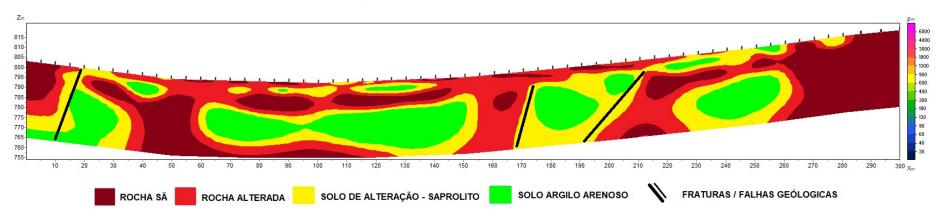
ÁREA 05 - L03



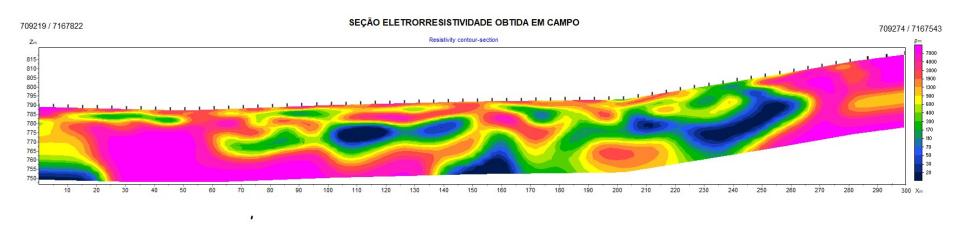


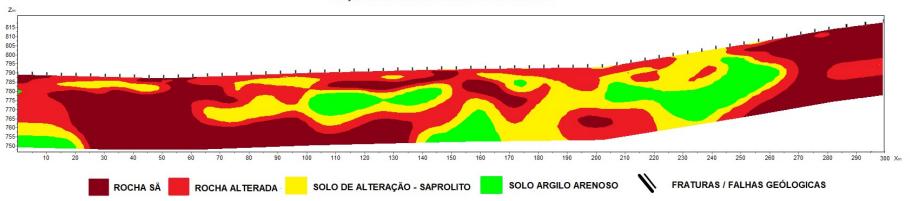
ÁREA 05 - L04



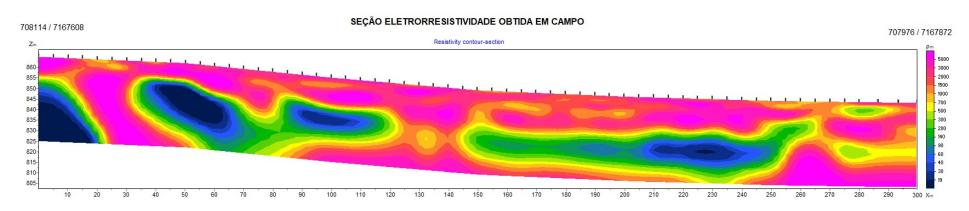


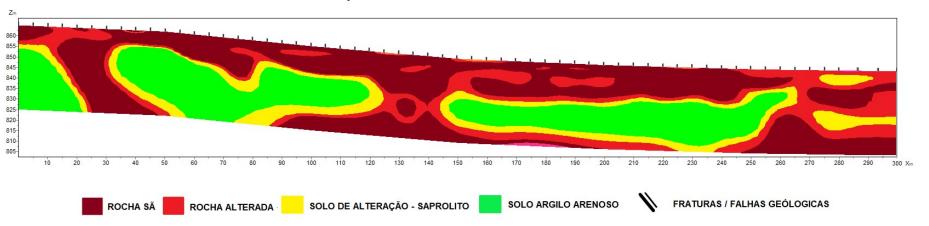
ÁREA 05 - L05





ÁREA 05 - L06 Emboque

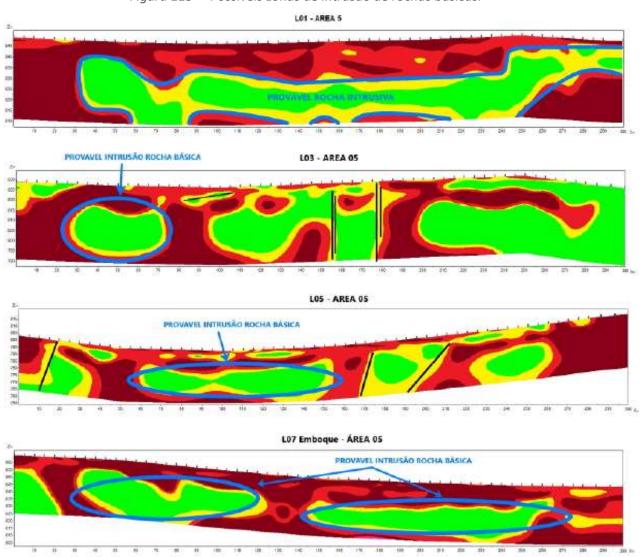




ÁREA 05 - L07 Emboque

SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

A Área 5 está inserida em um contexto geológico de gnáissicas (Complexo Gnáissico Migmatítico Santa Catarina), com ocorrências de intrusão de rochas básicas (diabásio) e zonas de fraturas. Nas seções geofísicas adquiridas da área, as rochas sã e alterada apresentam feições alongadas e arredondadas de baixa resistividade, estas classificadas como solo de alteração e solo argilo arenoso. Os solos argilosos arenosos apresentam características de baixa resistividades, similares a rochas básicas intrusivas (diabásios), que são compostos por minerais de composição ferro-magnesiano, que quando submetidos a correntes elétricas respondem com baixa resistividade por serem materiais condutivos, característica similar à dos solos argilo arenosos saturados. A indicação destas zonas em específico como rochas básicos em detrimento a outras zonas de ocorrência de solos argilo arenosos se deve principalmente à forma da geometria de contraste (alongadas e arredondadas) entre as rochas sã e alterada.


Recomenda-se nestas zonas cautela na projeção do desmonte, pois podem se caracterizar com zonas de alta resistência devido à similaridade das resistividades entre a rochas básica de intrusão e solos argilo arenosos saturados. A *Figura 113* apresenta as principais zonas de possíveis ocorrências de rochas básicas intrusivas.

Nas seções LO3, LO4 e LO5 foi interpretado zonas de possíveis falhas e fraturas geológicas. Estas podem estar associados a zonas de tensões estruturais das rochas e/ou intrusões de rochas básicas associadas.

Figura 113 – Possíveis zonas de intrusão de rochas básicas.

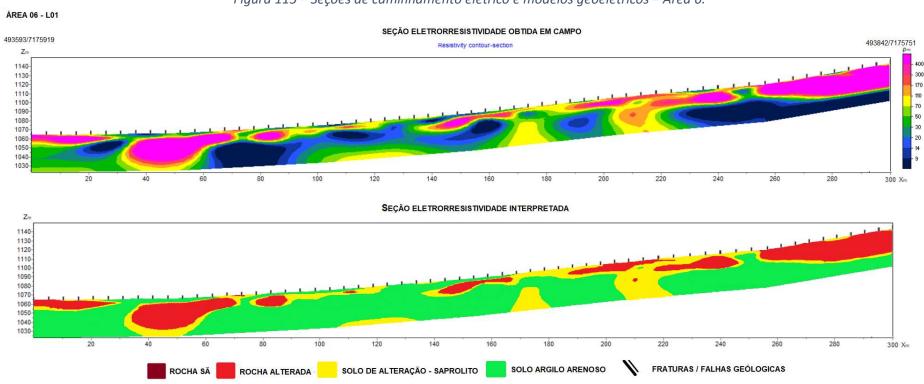
10.5.6 ÁREA 6

Abaixo serão apresentados os resultados obtidos para a Área 6.

Sondagens substituídas: SM-401, SM-402 e SM-403.

Figura 114 – Localização das seções de eletrorresistividade executadas na Área 6.

Fonte: Elaborado pelo Consórcio TPF-SENER.


Tabela 41 – Coordenadas inicial e final das seções levantadas na Área 6.

SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	0
	E	S	E	S	Comprimento (m)
		ÁREA 6			
L01	493593	7175919	493842	7175751	300
L02-Emboque	493698	7175727	493947	7175833	300
L03	493842	7175751	494041	7175526	300
L04	494041	7175526	494231	7175292	300
L05	494231	7175292	494423	7175059	300
L06	494423	7175059	494620	7174834	300
L07	494620	7174834	494815	7174608	300
L08-Emboque	494674	7174548	494902	7174743	300
L09	494815	7174608	494908	7174487	150
			_	Total:	2550

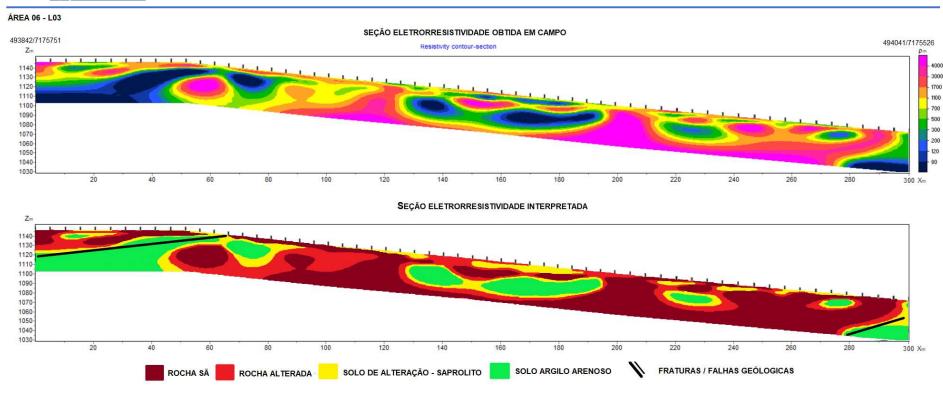


Figura 115 – Seções de caminhamento elétrico e modelos geoelétricos – Área 6.

1000-

20

220

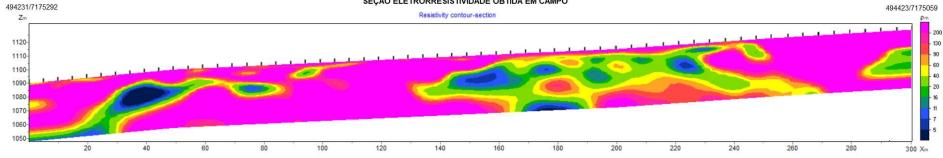
SOLO ARGILO ARENOSO

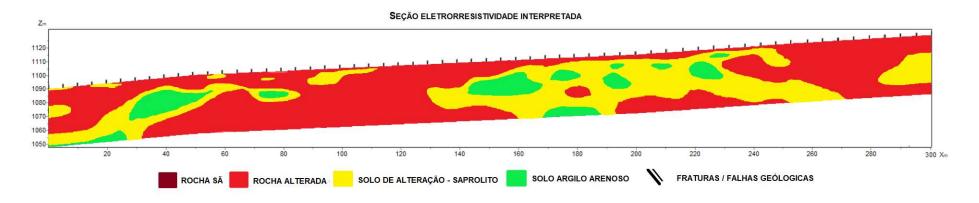
240

FRATURAS / FALHAS GEÓLOGICAS

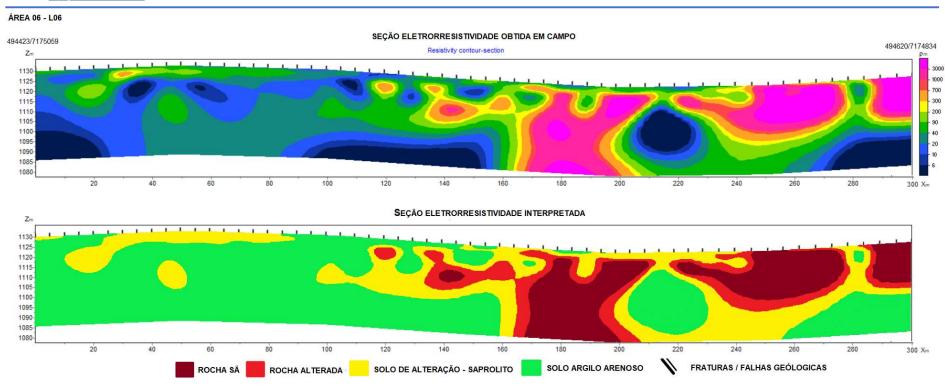
ÁREA 06 - L04 SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO 494041/7175526 494231/7175292 Resistivity contour-section 1080-1070-1060 1050 1000 1040-500 1030 300 1020 200 1010-1000 100 140 200 220 240 280 300 Xm SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA Zm 1080 1070 1060 1050 1040-1030 1020 1010-

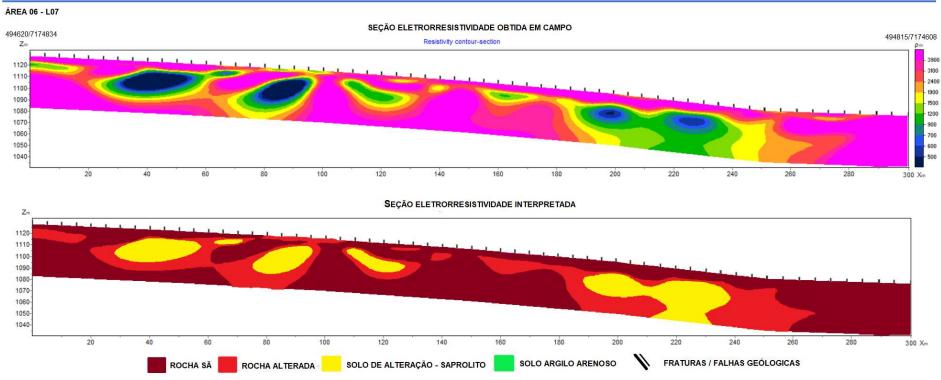
SOLO DE ALTERAÇÃO - SAPROLITO

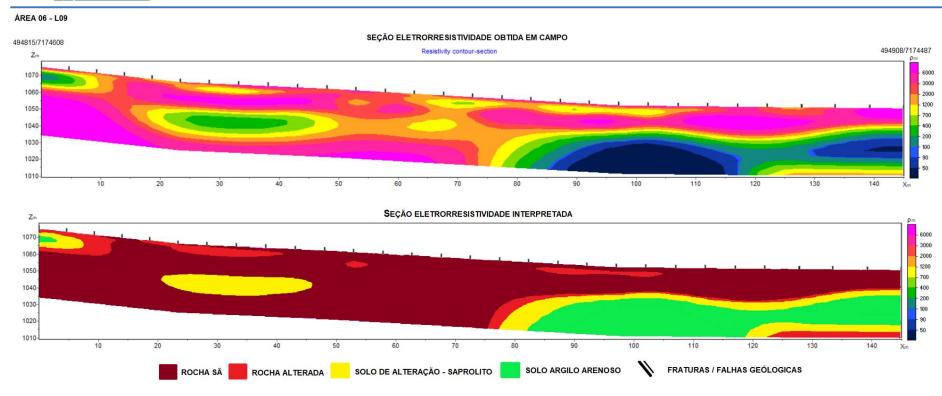

ROCHA ALTERADA

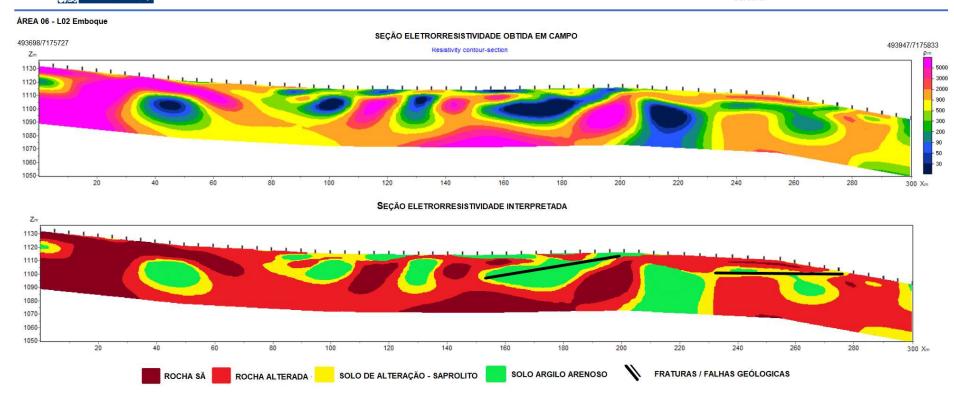

300 Xm

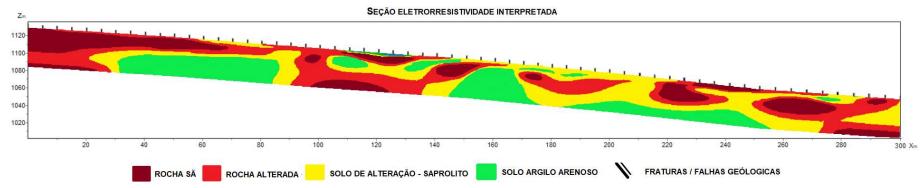
ÁREA 06 - L05 SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO 494231/7175292 Resistivity contour-section Zm











ÁREA 06 - L08 Emboque SEÇÃO ELETRORRESISTIVIDADE OBTIDA EM CAMPO 494674/7174548 494902/7174743 Resistivity contour-section Zm 1120 1900 1100-1400 1080 1000 1060-1040-400 1020-20 120 140 180 200 220 240 280 300 Xm

A geologia da Área 6 é composta por rochas vulcânicas como basaltos e andesitos, com estruturas maciços e tubular, fraturamentos verticais a sub-horizontais e descontinuidades atectônicas dos maciços rochosos. Podem ocorrer zonas de basalto vesicular e rochas sedimentares arenosas intercaladas a rochas vulcânicas.

As seções geofísicas da Área 6 apresentam maiores zonas de fratura nas seções LO2- Emboque e LO3, sendo este faturamento observado também em afloramentos nas áreas. Feições mais alteradas ocorrem nas seções LO4, LO7 e LO9, preenchidas por materiais arenosos (saprólitos) e por material argilo arenoso. Descontinuidade no maciço ocorrem nas seções LO5, LO6 e LO8-Emboque, estas feições podem estar associadas a zonas de maior faturamento e/ou ocorrência de rochas sedimentares nestas descontinuidades.

10.5.7 ÁREA 7

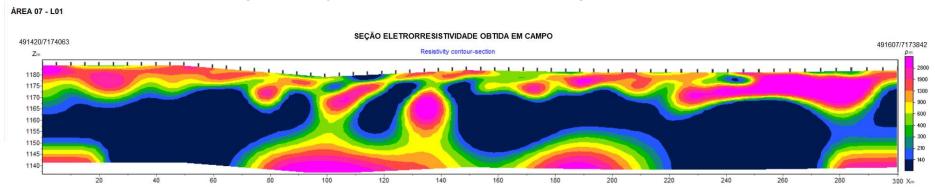
Abaixo serão apresentados os resultados obtidos para a Área 7.

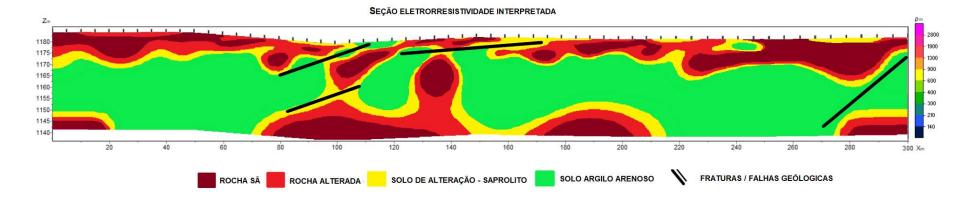
Sondagens substituídas: SM-404, SM-405 e SM-406.

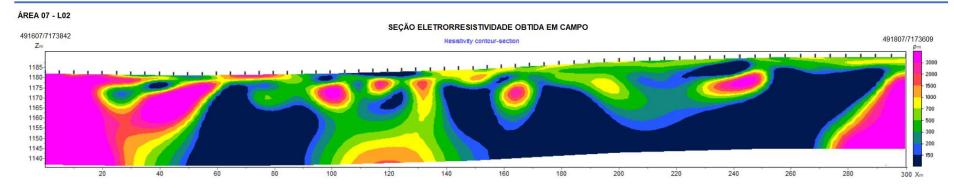
Google Earth

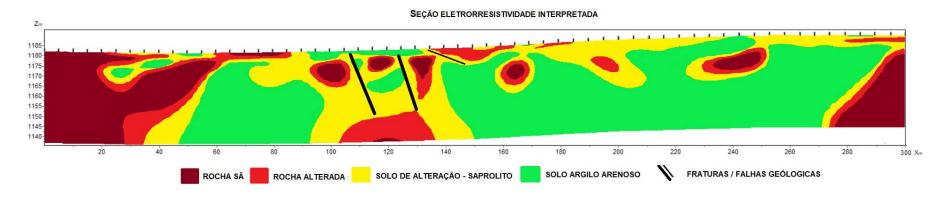
Figura 116 – Localização das seções de eletrorresistividade executadas na Área7.

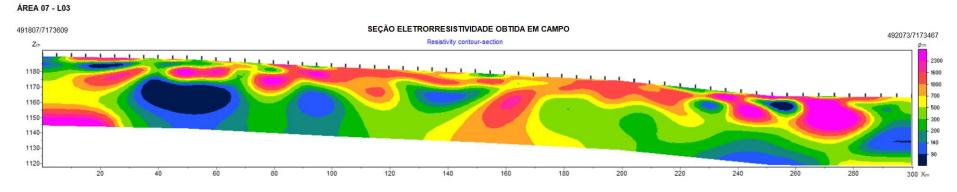
Fonte: Elaborado pelo Consórcio TPF-SENER.

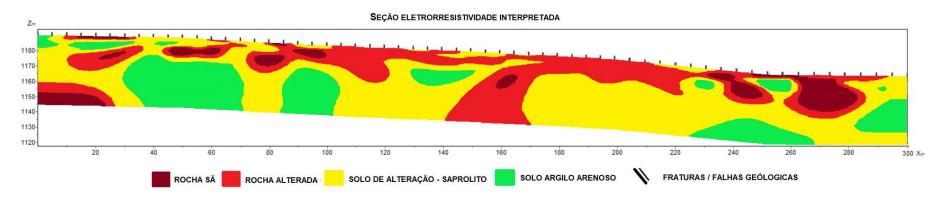

Tabela 42 – Coordenadas inicial e final das seções levantadas na Área 7.

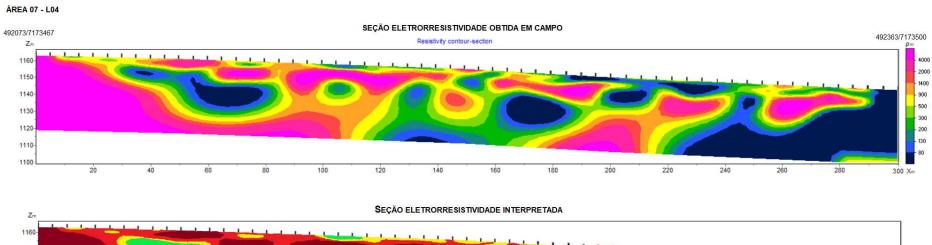

SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	
	E	S	E	S	Comprimento (m)
		ÁREA 7			
L01	491420	7174063	491607	7173842	300
L02	491607	7173842	491807	7173609	300
L03	491807	7173609	492073	7173467	300
L04	492073	7173467	492363	7173500	300
L05	492363	7173500	492628	7173650	300
L06	492628	7173650	492881	7173819	300
L07	492881	7173819	493043	7174073	300
L08	493043	7174073	493090	7174369	300
L09	493090	7174369	493174	7174653	300
L10-Emboque	492096	7173346	492101	7173646	300
L11-Emboque	493275	7174325	492987	7174419	300
		-	-	Total:	3300

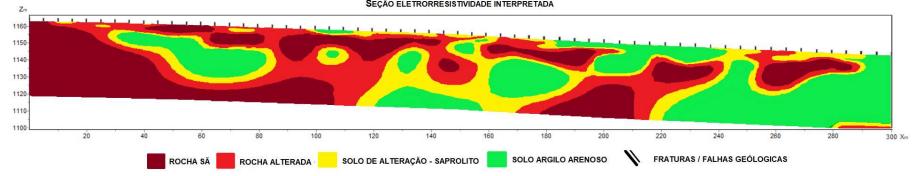

Figura 117 – Seções de caminhamento elétrico e modelos geoelétricos – Área 7.

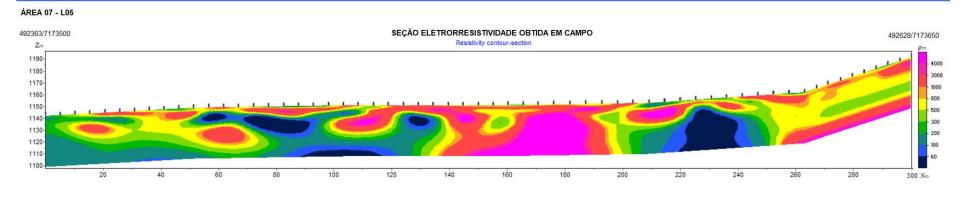


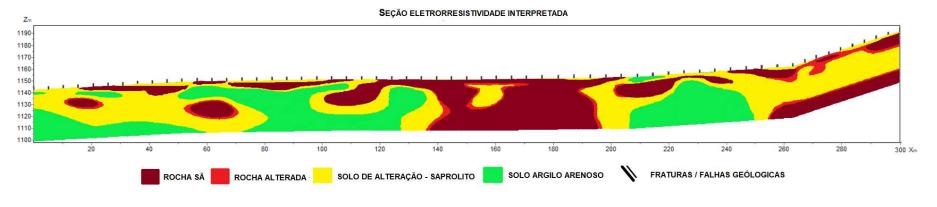


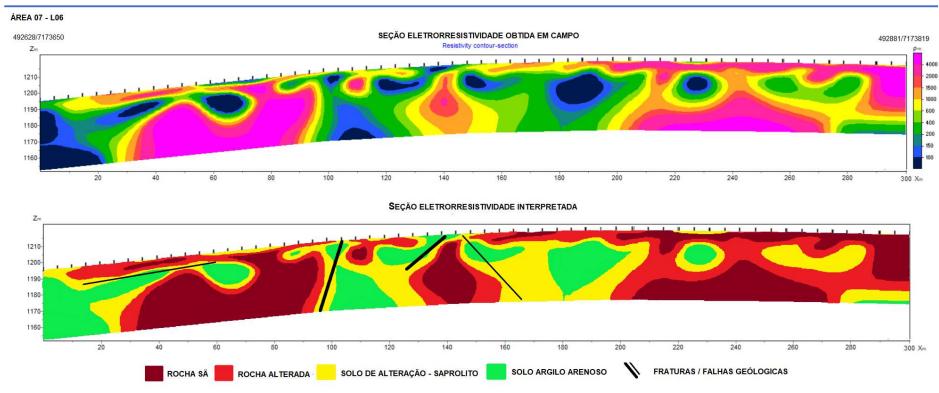


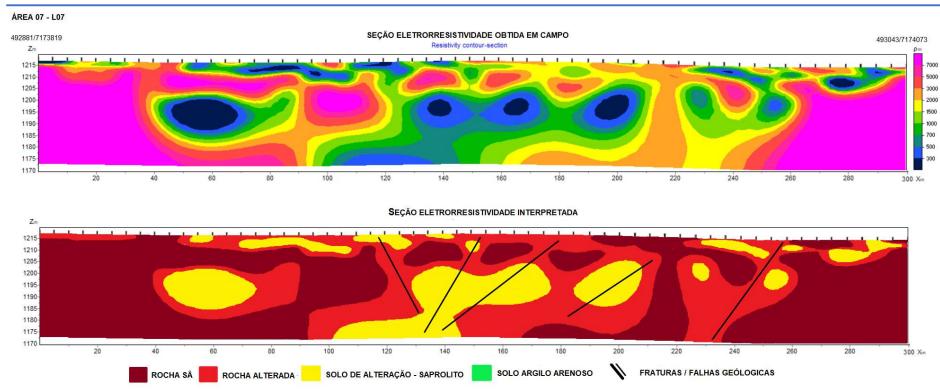


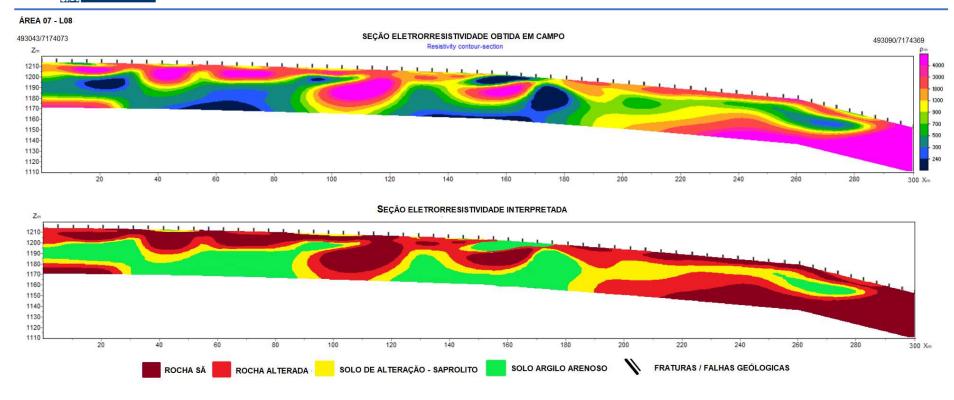


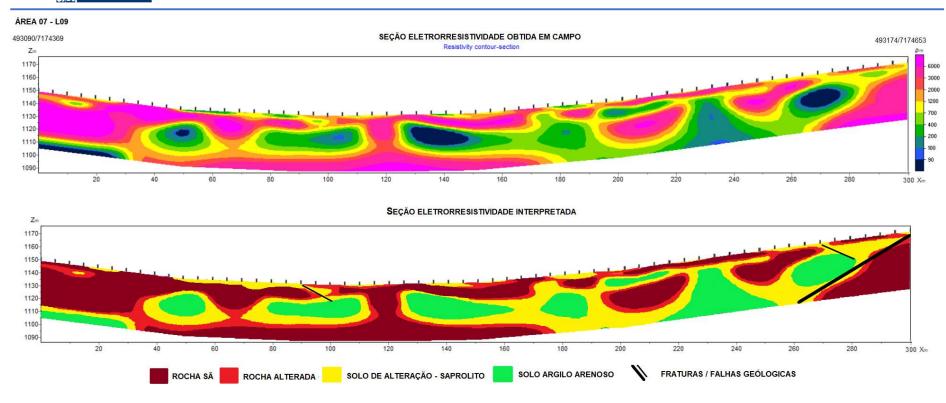


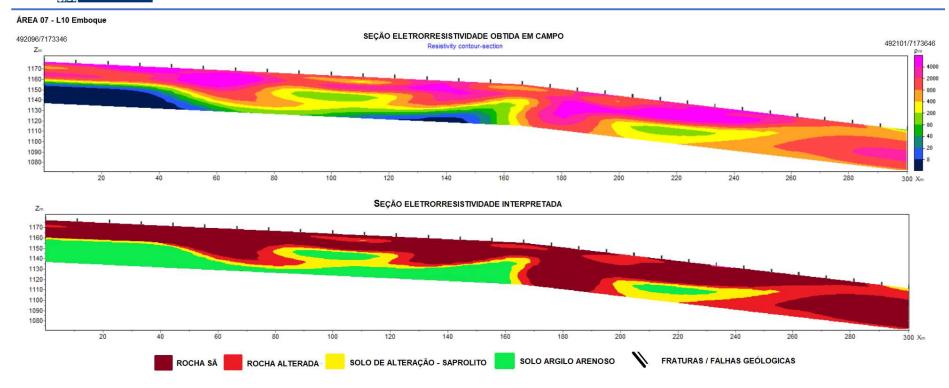


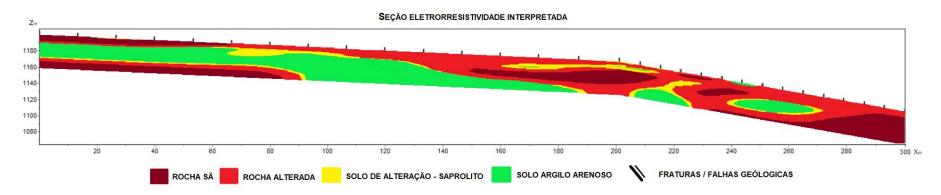












ÁREA 09 - L11 Emboque

A geologia da Área 7 é composta por rochas vulcânicas (basaltos) e intercalações de rochas sedimentares (arenitos) em uma área de contato entre rochas cristalinas vulcânicas e formações sedimentares. As seções geofísicas LO1, LO2, LO5, LO6 e LO9 apresentam intercalações de sedimentos argilo arenosos e solos de alteração (saprólitos) ao longo do maciço rochoso e com ocorrências de zonas de fraturas sub-horizontais a verticais ao longo das seções.

Descontinuidade dos maciços rochosos foi interpretado nas seções L03 e inserções clásticas arenosas nas seções L04, L08, L10-Emboque e L11-Emboque. Nas seções L07 ocorrem intenso faturamento ao longo do maciço rochoso interpretado na seção geofisica interpretada.

10.5.8 ÁREA 8

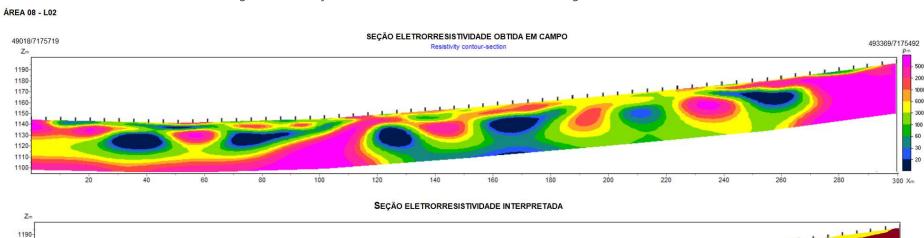
Abaixo serão apresentados os resultados obtidos para a Área 8.

Sondagem substituída: SM-408.

LO2 LO3 LO5 LO6
LO4
LO4
LO7-Emboque

Figura 118 – Localização das seções de eletrorresistividade executadas na Área 8.

Fonte: Elaborado pelo Consórcio TPF-SENER.


Tabela 43 – Coordenadas inicial e final das seções levantadas na Área 8.

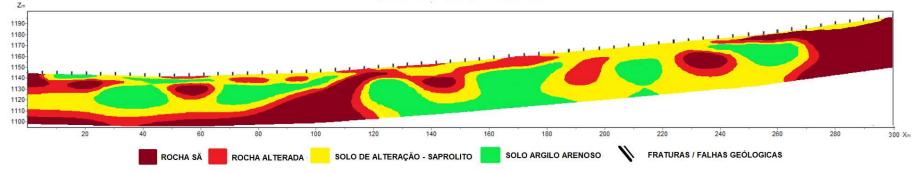
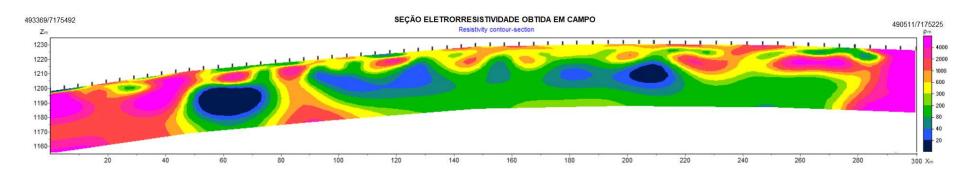
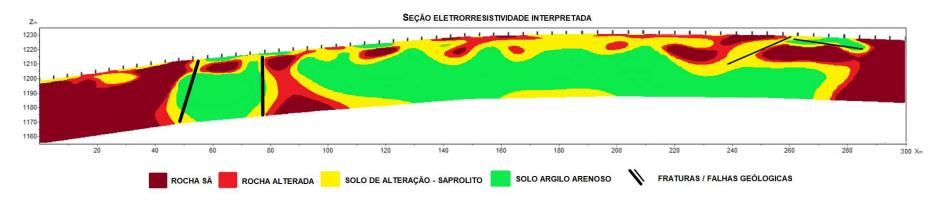
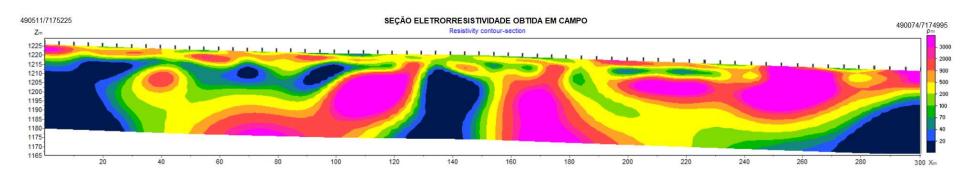

SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	Comprimento (m)		
SEÇOES	E	S	Е	S	Comprimento (iii)		
	ÁREA 8						
L01-Emboque	490165	7175471	490441	7175586	300		
L02	490180	7175719	490369	7175492	300		
L03	490369	7175492	490511	7175225	300		
L04	490511	7175225	490704	7174995	300		
L05	490704	7174995	490860	7174739	300		
L06	490860	7174739	491034	7174500	300		
L07-Emboque	490731	7174612	490964	7174800	300		
	_			Total:	2100		

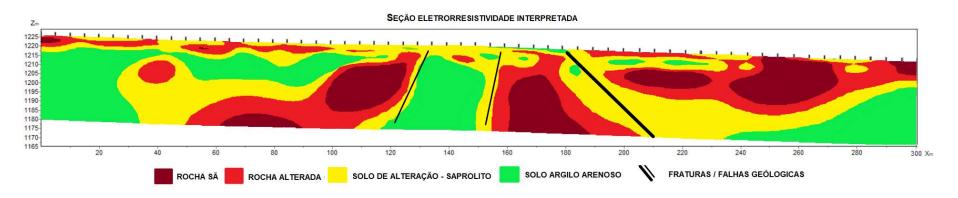
Figura 119 – Seções de caminhamento elétrico e modelos geoelétricos – Área 8.



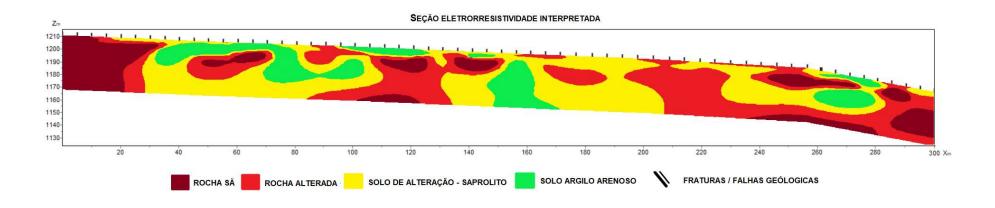


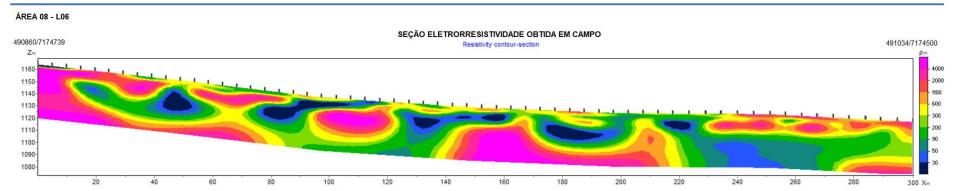
ÁREA 08 - L03

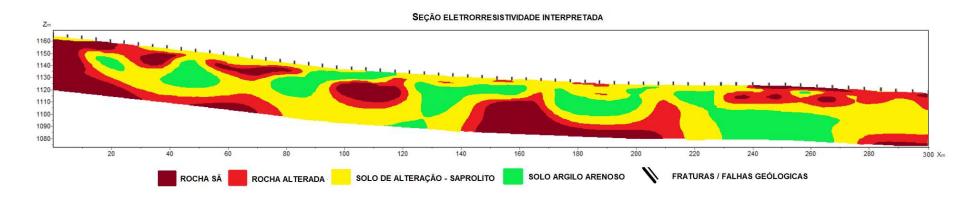


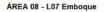


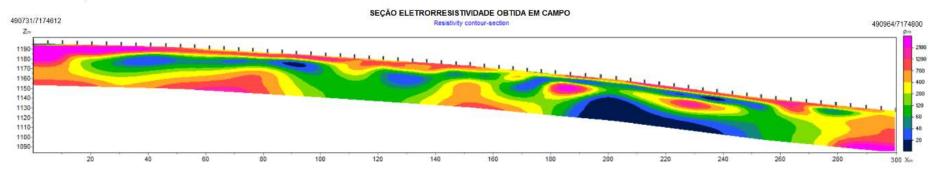
ÁREA 08 - L04

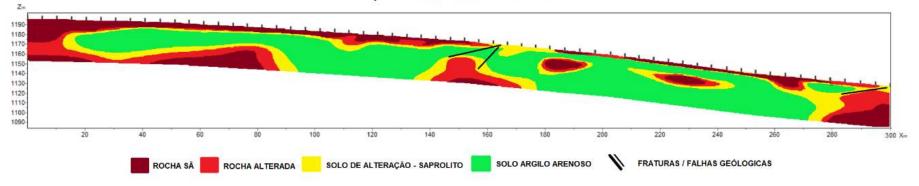








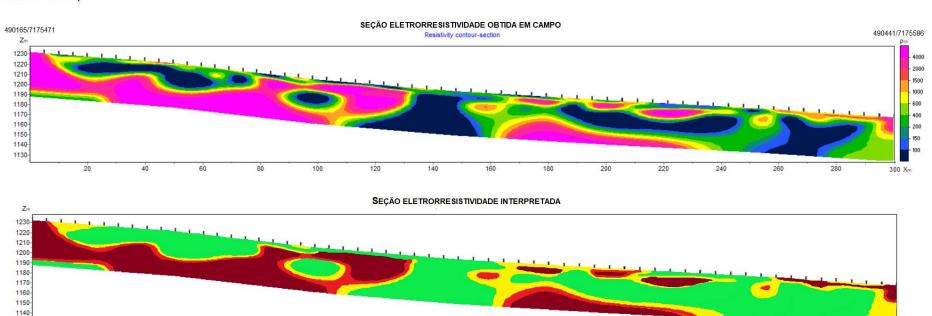




SEÇÃO ELETRORRESISTIVIDADE INTERPRETADA

280

300 Xm


220

FRATURAS / FALHAS GEÓLOGICAS

ÁREA 08 - L01 Emboque

1130-

20

Fonte: Elaborado pelo Consórcio TPF-SENER.

SOLO DE ALTERAÇÃO - SAPROLITO

SOLO ARGILO ARENOSO

ROCHA ALTERADA

A Área 8 está inserida em uma região de contato entre formações de rochas vulcânicas (basaltos, andesitos e riolitos) e formação sedimentares (arenitos e siltitos). As seções geofísicas L01, L02, L05 e L06 apresentam intercalações e descontinuidades dos maciços rochosos vulcânicos com as rochas sedimentares (possível correlação com solos de alteração) e zonas de maior alteração das rochas vulcânicas, estas representadas pelos solos argilo arenosos. Os fraturamentos verticais e subhorizontais possíveis de interpretação foram identificados nas seções L03, L04 e L07.

Em observações de campo, as formações rochosas apresentam forma estrutural tabular e com intenso faturamento ao longo dos maciços rochosos expostos. Recomenda-se cautela no desmonte em regiões identificadas com rocha sã e alterada, que podem apresentar padrão de comportamento estrutural das formações rochosas.

10.5.9 ÁREA 9

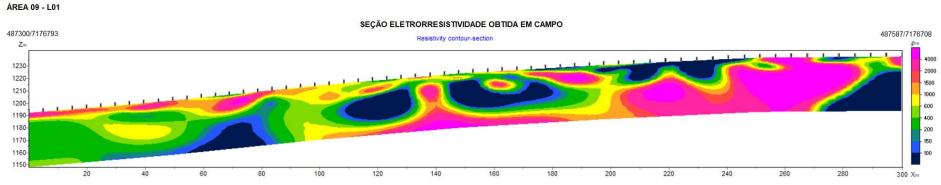
Abaixo serão apresentados os resultados obtidos para a Área 9.

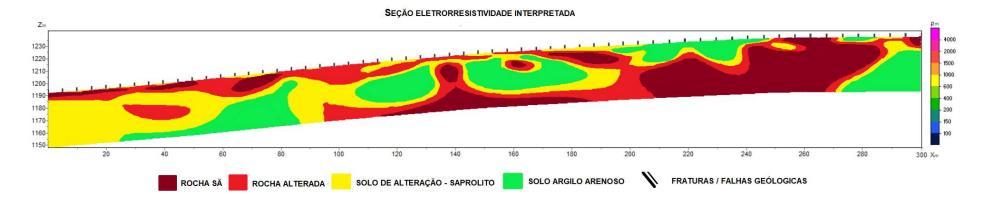
Sondagens substituídas: SM-410.

L07 02-Emboque L08-Emboque Google Earth

Figura 120 – Localização das seções de eletrorresistividade executadas na Área 9.

Fonte: Elaborado pelo Consórcio TPF-SENER.


Tabela 44 – Coordenadas inicial e final das seções levantadas na Área 9.


SEÇÕES	Coordenada	Coordenada Inicial (22J)		a Final (22J)	0	
SEÇUES	E	S	E	S	Comprimento (m)	
ÁREA 9						
L01	487300	7176793	487587	7176708	300	
L02-Emboque	487352	7176656	487462	7176925	300	
L03	487587	7176708	487866	7176593	300	
L04	487866	7176593	488148	7176477	300	
L05	488148	7176477	488441	7176393	300	
L06	488441	7176393	488740	7176309	300	
L07	488740	7176309	489016	7176199	300	
L08-Emboque	488773	7176168	488817	7176470	300	
		_		Total:	2400	

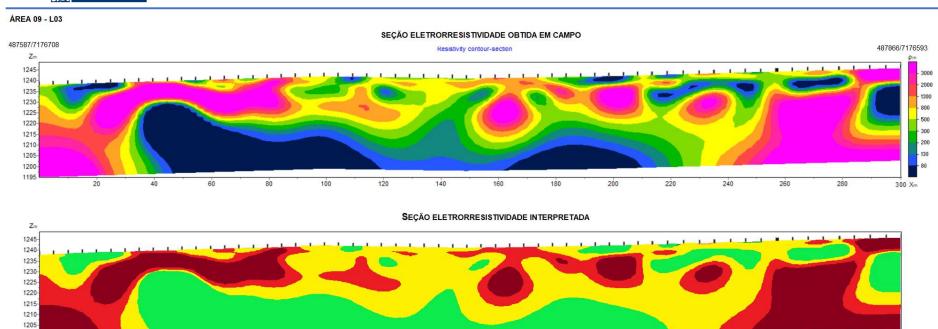
220

SOLO ARGILO ARENOSO

240

FRATURAS / FALHAS GEÓLOGICAS

260

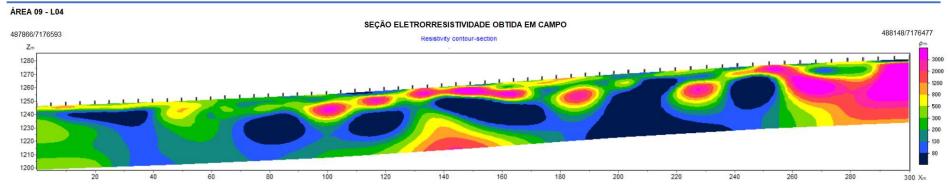

280

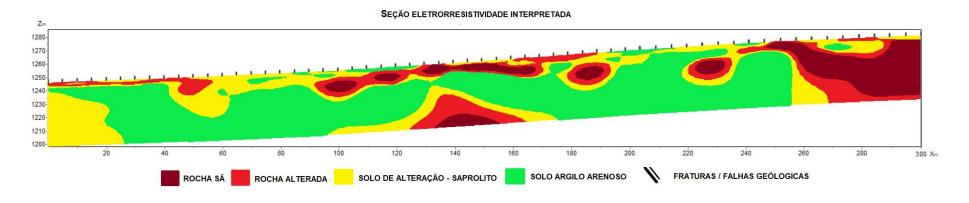
300 Xm

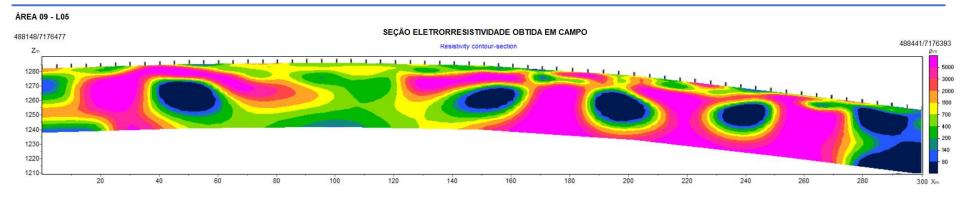
SENER

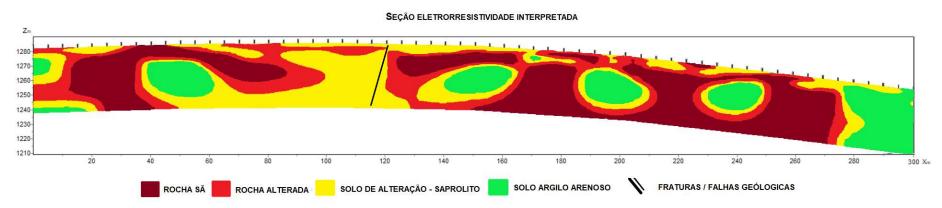
1200-1195

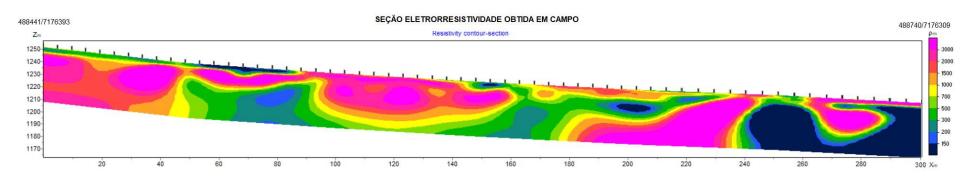
20

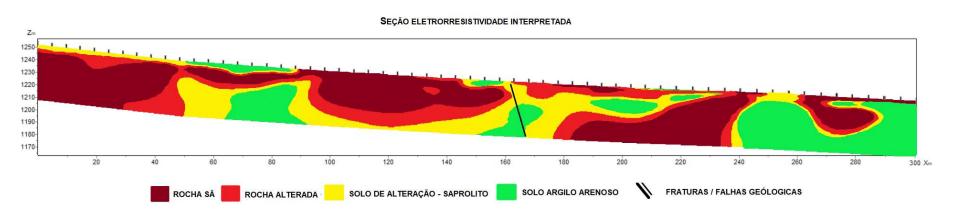

SOLO DE ALTERAÇÃO - SAPROLITO


ROCHA ALTERADA

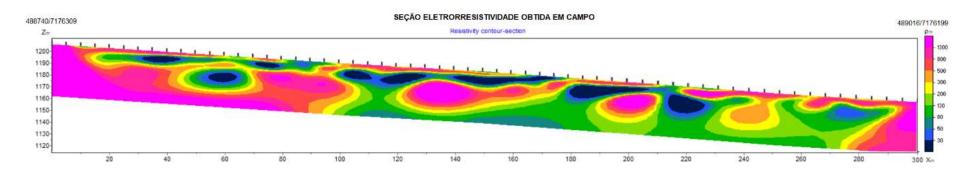


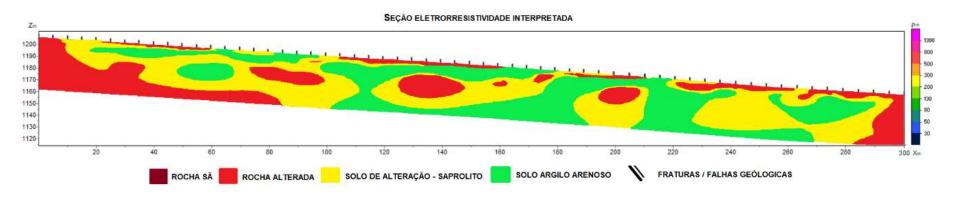




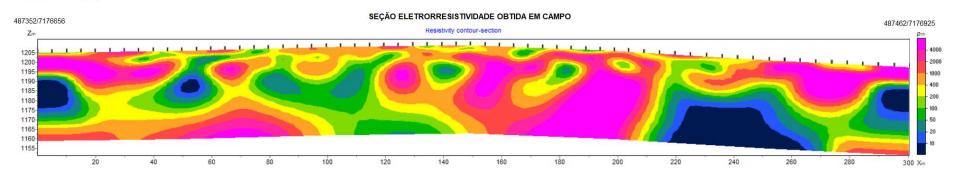


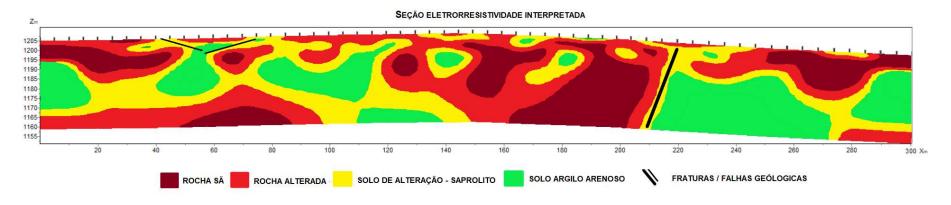
ÁREA 09 - L06



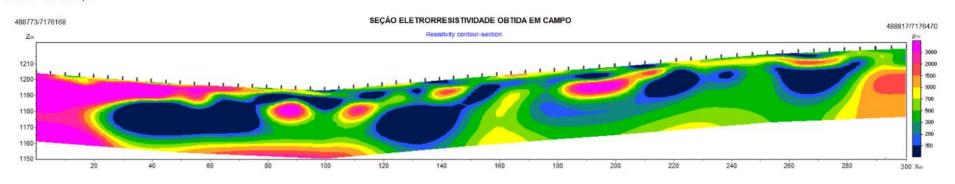


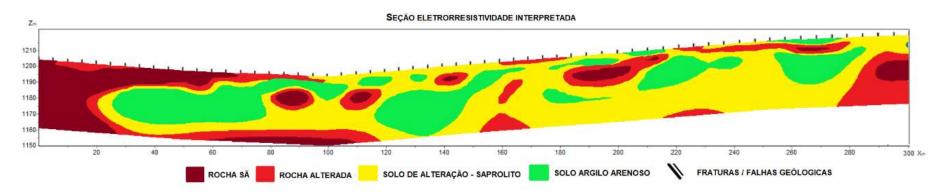
ÁREA 09 - L07





ÁREA 09 - L02 Emboque





ÁREA 09 - L08 Emboque

A geologia local da área 9 está inserida em formações rochosas vulcânicas, com ocorrência de basaltos e andesitos com estrutura maciça. Nas seções geofísicas obtidas e interpretadas LO1, LO2 e LO3 apresentam inserções de zonas de alteração no maciço rochoso, estas zonas de alteração são correlacionadas a formações de solos argilo arenosos e solos de alteração saprolíticos. Nas seções LO4, LO7 e LO8 ocorrem maior descontinuidade dos maciços rochosos e maior faturamento nas seções LO4, LO5 e LO6.

Ressalta-se que a interpretação aqui apresentada, e que se refere ao atual conhecimento do local e baseada em um método indireto de avaliação de subsuperfície, pode ser modificada caso se obtenham novos dados a partir de sondagens ou outras investigações que venham a ser realizadas na área de interesse e até mesmo de novo levantamento geofísico de detalhamento neste local, para melhor avaliação e definição do substrato geológico dos perfis realizados.

Desta forma, recomenda-se cautela em eventuais atividades de escavação nos locais indicados das seções geofísicas, para que se evitem danos materiais, bem como aos trabalhadores envolvidos, devido a análise e interpretação realizada através de um método indireto.

11 ANÁLISE DE ESTABILIDADE DE TALUDES

As análises de estabilidade da solução foram realizadas de acordo com as recomendações da Norma Brasileira de Estabilidade de Encostas (NBR 11682/2009), que recomenda a definição do fator de segurança (FS) considerando os níveis de segurança contra perda de vidas humanas e contra danos ambientais, obtendo os níveis de segurança mínimos exigidos apresentadas a seguir.

Tabela 45 – Nível de segurança desejado contra perdas de vidas humanas.

Nível de segurança	Critérios		
Alto	Áreas com intensa movimentação e permanência de pessoas, como edificações públicas, residenciais ou industriais, estádios, praças e demais locais, urbanos ou não, com possibilidade de elevada concentração de pessoas		
	Ferrovias e rodovias de tráfego intenso		
Médio	Áreas e edificações com movimentação e permanência restrita de pessoas		
	Ferrovias e rodovias de tráfego moderado		
Baixo	Áreas e edificações com movimentação e permanência eventual de pessoas		
	Ferrovias e rodovias de tráfego reduzido		

Fonte: NBR 11682/2009.

Tabela 46 – Nível de segurança desejado contra danos materiais e ambientais.

Nível de segurança	Critérios			
Alto	Danos materiais: Locais próximos a propriedades de alto valor histórico, socia ou patrimonial, obras de grande porte e áreas que afetem serviços essenciais			
	Danos ambientais: Locais sujeitos a acidentes ambientais graves, tais como nas proximidades de oleodutos, barragens de rejeito e fábricas de produtos tóxicos			
Médio	Danos materiais: Locais próximos a propriedades de valor moderado Danos ambientais: Locais sujeitos a acidentes ambientais moderados			
Baixo	Danos materiais: Locais próximos a propriedades de valor reduzido Danos ambientais: Locais sujeitos a acidentes ambientais reduzidos			

Fonte: NBR 11682/2009.

Tabela 47 – Fatores de segurança mínimos para deslizamentos.

Nível de segurança contra danos a vidas humanas Nível de segurança contra danos materiais e ambientais	Alto	Médio	Baixo
Alto	1,5	1,5	1,4
Médio	1,5	1,4	1,3
Baixo	1,4	1,3	1,2

No caso de grande variabilidade dos resultados dos ensaios geotécnicos, os fatores de segurança da tabela acima devem ser majorados em 10 %. Alternativamente, pode ser usado o enfoque semiprobabilístico indicado no Anexo D.

No caso de estabilidade de lascas/blocos rochosos, podem ser utilizados fatores de segurança parciais, incidindo sobre os parâmetros γ, φ, c, em função das incertezas sobre estes parâmetros. O método de cálculo deve ainda considerar um fator de segurança mínimo de 1,1. Este caso deve ser justificado pelo engenheiro civil geotécnico.

NOTA 3 Esta tabela não se aplica aos casos de rastejo, voçorocas, ravinas e queda ou rolamento de blocos.

Fonte: NBR 11682/2009.

Para situação de aterro (terraplenagem/retaludamento), conforme critérios da norma apresentados nas tabelas acima, foi considerado um FS mínimo de 1,3. Esta segurança corresponde a nível médio de segurança contra perda de vidas humanas (recomendado para ferrovias de tráfego moderado) e nível baixo de segurança contra danos materiais e ambientais (recomendado quando próximo a propriedades de valor reduzido e sujeito a acidentes ambientais reduzidos).

Para as análises de estabilidade ao escorregamento dos taludes, aplicou-se o método de equilíbrio limite, empregando o processo analítico proposto por Bishop, com utilização do software Slide da Rocscience na versão 7.0. Em todas as condições analisadas foram pesquisadas superfícies circulares de ruptura globais críticas.

Foi considerada uma sobrecarga com valor mínimo de 45 kPa (0,45 kgf/cm²), tendo como base o disposto no item 2.3 da ISF-207 do DNIT, onde está previsto que o solo do subleito deve suportar uma tensão admissível mínima de tal valor. Uma vez que as cargas atuantes devem ser inferiores à tensão admissível, a verificação da estabilidade considerando a sobrecarga supracitada está a favor da segurança.

Já a linha do lençol freático foi considerada conforme o nível d'água obtido pelas sondagens de referência executadas nas áreas de estudo.

Foram analisados um talude de corte e um de aterro para cada subtrecho na situação mais desfavorável, ou seja, foram consideradas as maiores alturas dos taludes, conforme definido no anteprojeto geométrico. A inclinação padrão de cada talude é de 1 (H):1 (V) para aterro, 1 (H):1,5 (V) nos cortes em solo e 1 (H):8 (V) em rocha.

Abaixo estão apresentadas as sondagens de referência nas quais se basearam a obtenção dos parâmetros e análise de estabilidade.

Tabela 48 – Sondagens de referência e altura de taludes para corte e aterro.

CII	SUBTRECHO	SO	NDAGEM	SONDAGEM	
SH		CORTE	ALTURA TALUDE	ATERRO	ALTURA TALUDE
9 e 10	1.6	SM-118	30	SP-103	40
8	1.5	SP-204	30	SP-201	30
7	1.4.2	SP-303	40	SP-302	40
6	1.4.1	SP-402	40	SP-408	40
5	1.3.2	SP-502	20	SP-501	30
4	1.3.1	SM-600	15	SP-600	30
	1.2	SM-703	35	SP-700	40
	1.1.1	SM-800	20	SP-800	20
3	1.0.2	SM-901	40	SP-901	40
1 e 2	1.0.1	SM-903	40	SP-909	40
11	RAMAL	SM-1002	30	SP-1102	40

11.1 ESTABILIDADE DOS TALUDES DE ATERRO

A seguir estão apresentadas as análises de estabilidade dos taludes de aterro, onde são apresentados a superfície crítica, a geometria e os parâmetros adotados para cada subtrecho.

Figura 122 – Análise estabilidade taludes de aterro Subtrecho 1.6 – FS = 1,265.

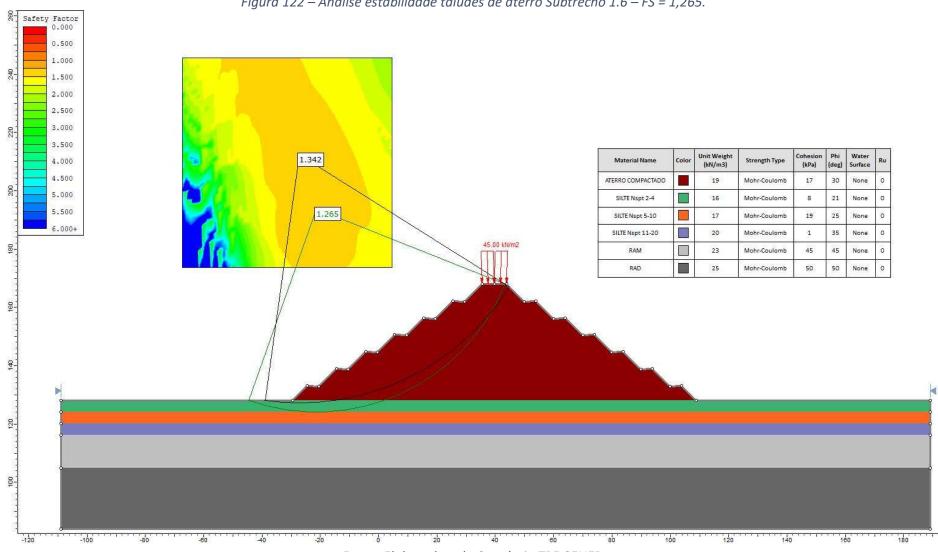


Figura 123 – Análise estabilidade taludes de aterro Subtrecho 1.5 – FS = 1,319.

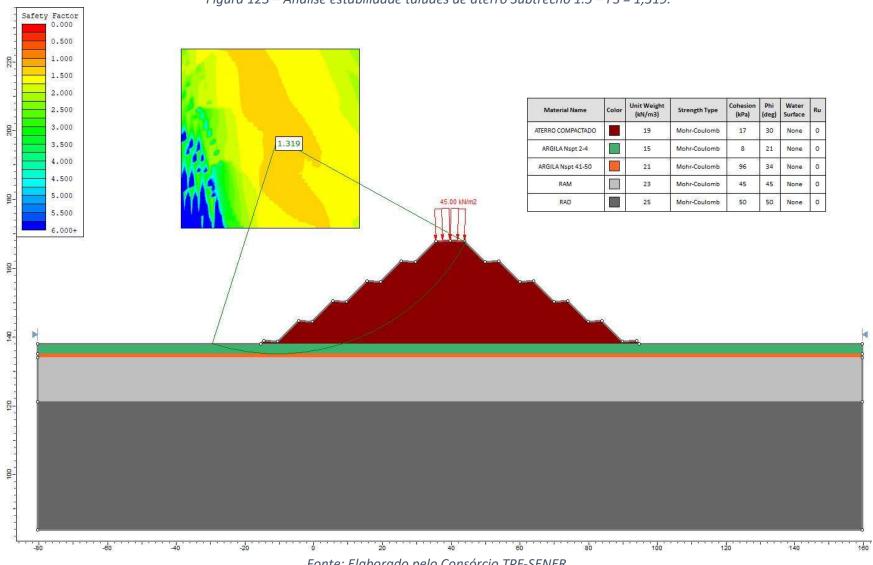


Figura 124 – Análise estabilidade taludes de aterro Subtrecho 1.4.2 – FS = 1,356.

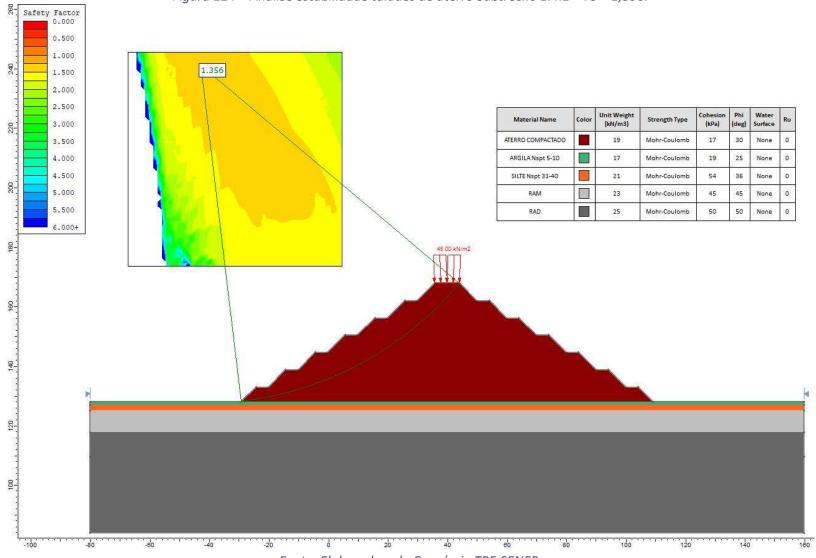


Figura 125 – Análise estabilidade taludes de aterro Subtrecho 1.4.1 – FS = 1,315.

Figura 126 – Análise estabilidade taludes de aterro Subtrecho 1.3.2 – FS = 1,351.

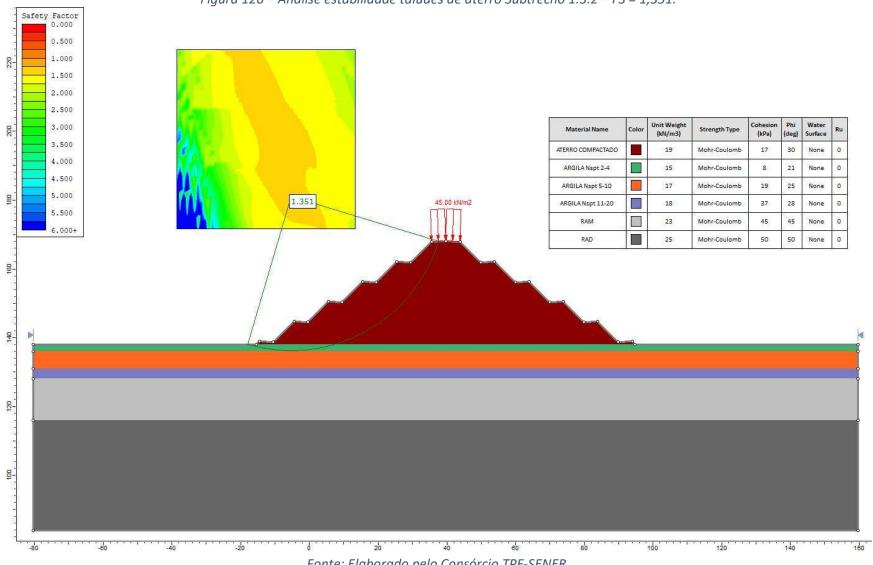


Figura 127 – Análise estabilidade taludes de aterro Subtrecho 1.3.1 – FS = 1,410.

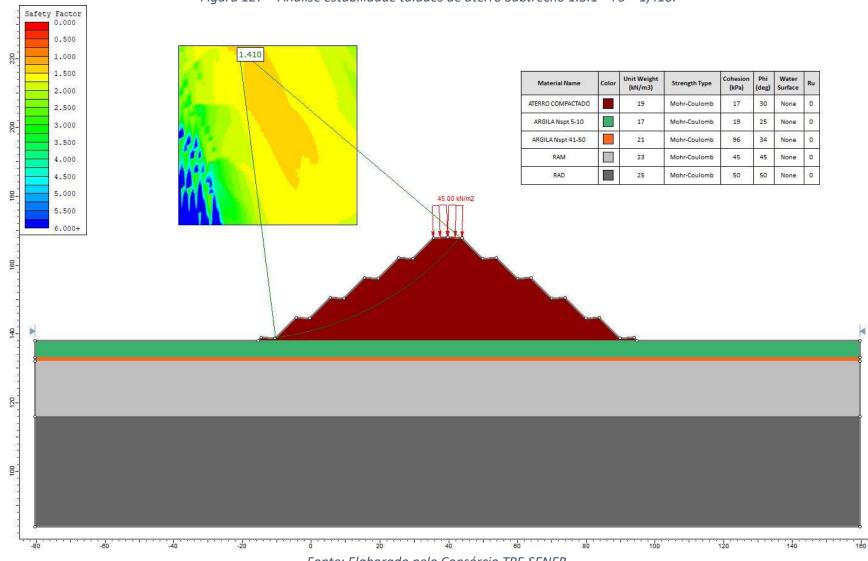


Figura 128 – Análise estabilidade taludes de aterro Subtrecho 1.2 – FS = 1,355.

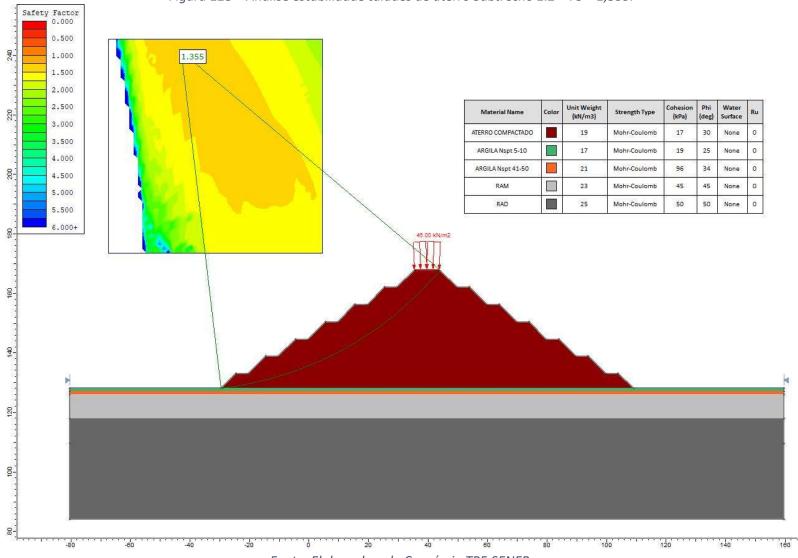


Figura 129 – Análise estabilidade taludes de aterro Subtrecho 1.1.1 – FS = 1,541.

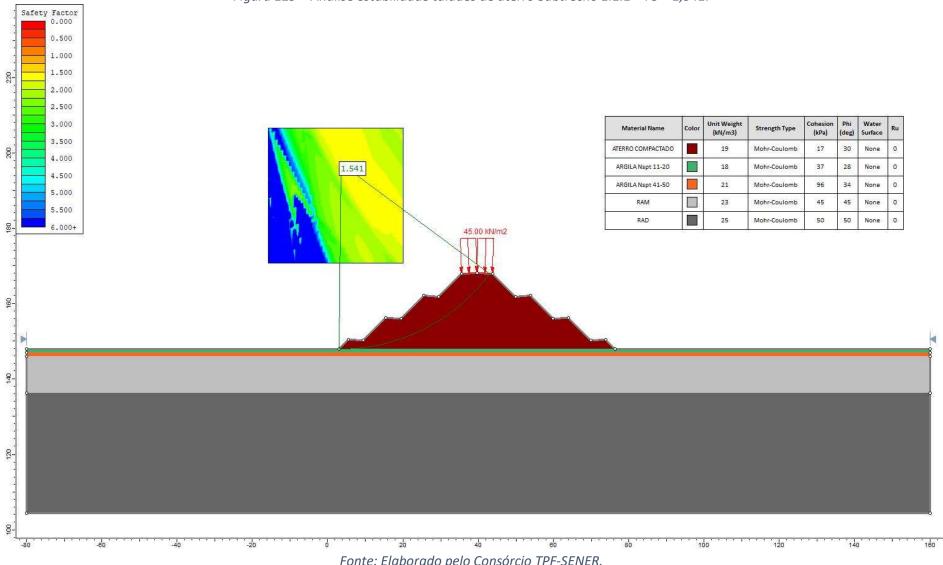


Figura 130 – Análise estabilidade taludes de aterro Subtrecho 1.0.2 – FS = 1,301.

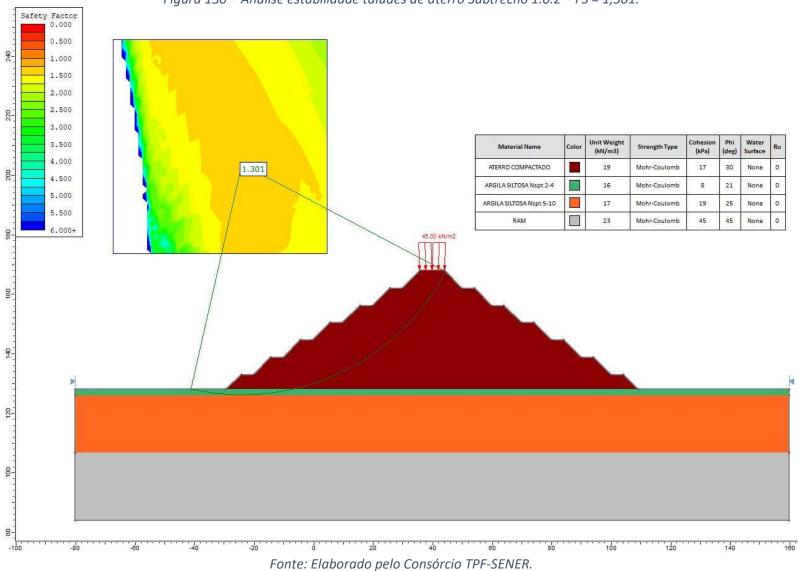
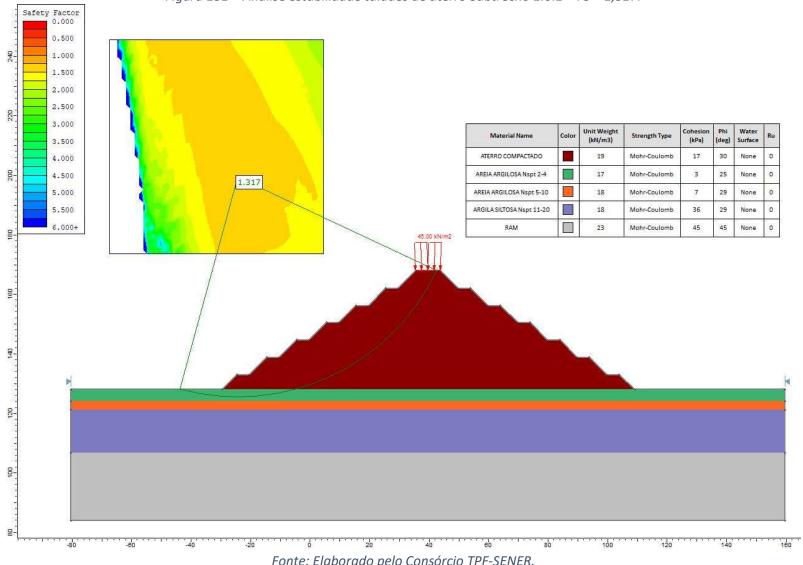


Figura 131 – Análise estabilidade taludes de aterro Subtrecho 1.0.1 – FS = 1,317.



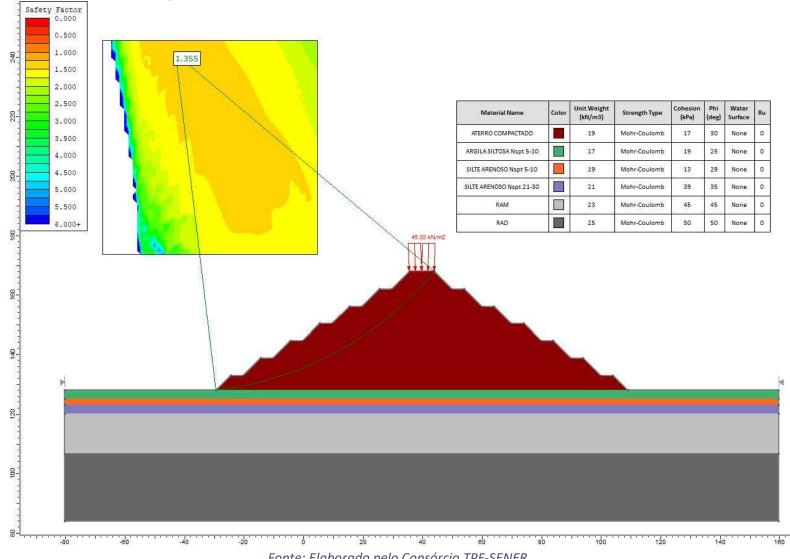


Figura 132 – Análise estabilidade taludes de aterro Subtrecho Ramal – FS = 1,355.

Conforme resultados apresentados acima, observa-se que as análises que obtiveram valores de FS muito próximo a 1,3 (subtrecho 1.6, 1.5, 1.4.1, 1.0.2 e 1.0.1) são nos aterros que serão executados sobre solos moles (Nspt entre 2-4) os quais deverão ser submetidos a soluções de engenharia para estabilizá-los na implantação da obra e, também, a realização de ensaios para obtenção dos parâmetros corretos para uso nas análises.

11.2 ESTABILIDADE DOS TALUDES DE CORTE

A seguir estão apresentadas as análises de estabilidade dos taludes de corte, onde são apresentados a superfície crítica, a geometria e os parâmetros adotados para cada subtrecho.

Figura 133 – Análise estabilidade taludes de corte Subtrecho 1.6 – FS = 1,608.

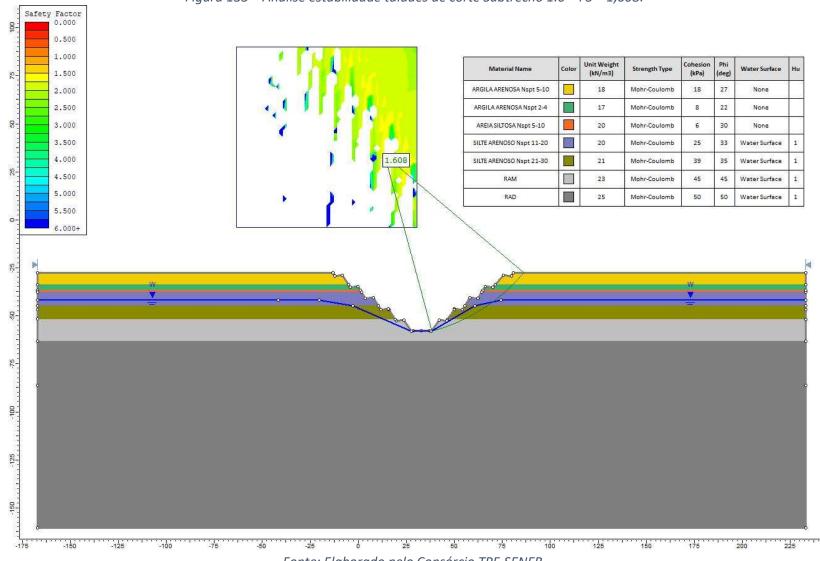


Figura 134 – Análise estabilidade taludes de corte Subtrecho 1.5 – FS = 1,560.

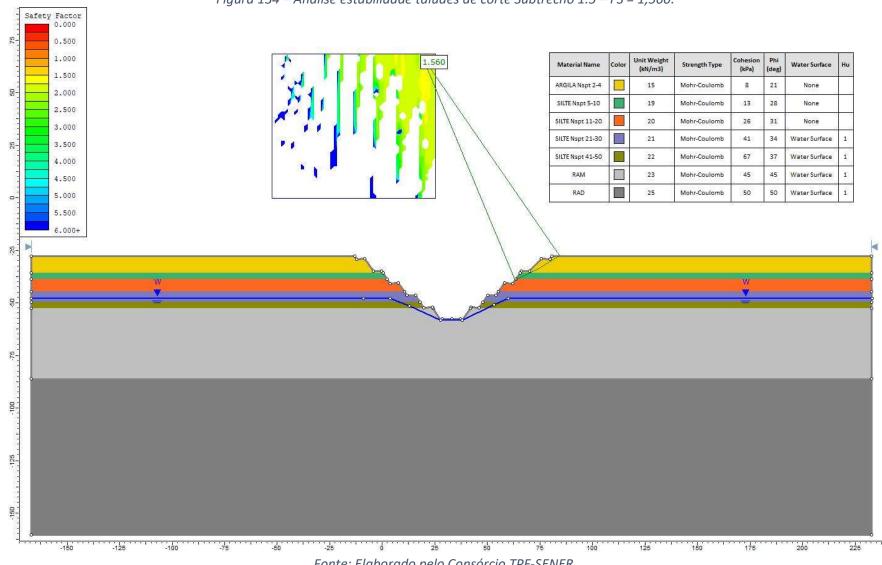


Figura 135 – Análise estabilidade taludes de corte Subtrecho 1.4.2 – FS = 1,500.

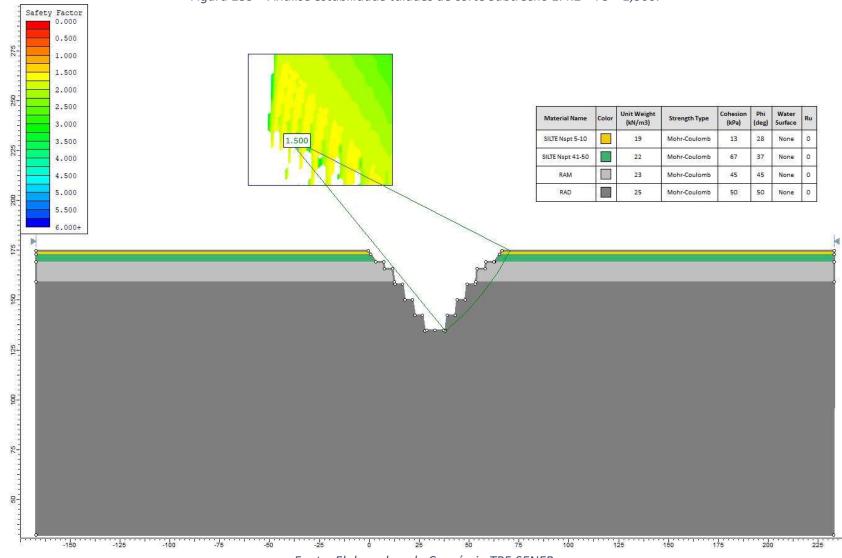


Figura 136 – Análise estabilidade taludes de corte Subtrecho 1.4.1 – FS = 1,455. Safety Factor 0.500 1.000 1.500 2.000 Unit Weight Phi (deg) 2.500 (kN/m3) (kPa) 3.000 3.500 SILTE Nspt 41-50 37 22 Mohr-Coulomb 67 4.000 RAM 23 45 45 Mohr-Coulomb None 4.500 50 25 Mohr-Coulomb None 5.000 5.500 6.000+ Fonte: Elaborado pelo Consórcio TPF-SENER.

Figura 137 – Análise estabilidade taludes de corte Subtrecho 1.3.2 – FS = 1,949.

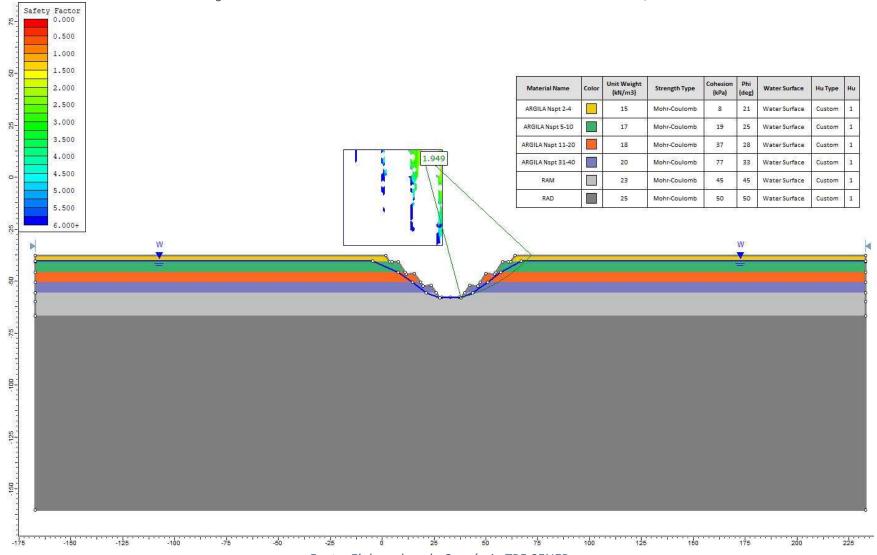


Figura 139 – Análise estabilidade talude de aterro Subtrecho 1.2 – FS = 1,506. Safety Factor 0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 Unit Weight Phi (deg) (kN/m3) (kPa) 4.000 45 4.500 RAD 25 50 50 Mohr-Coulomb 5.000 5.500 6.000+

-125

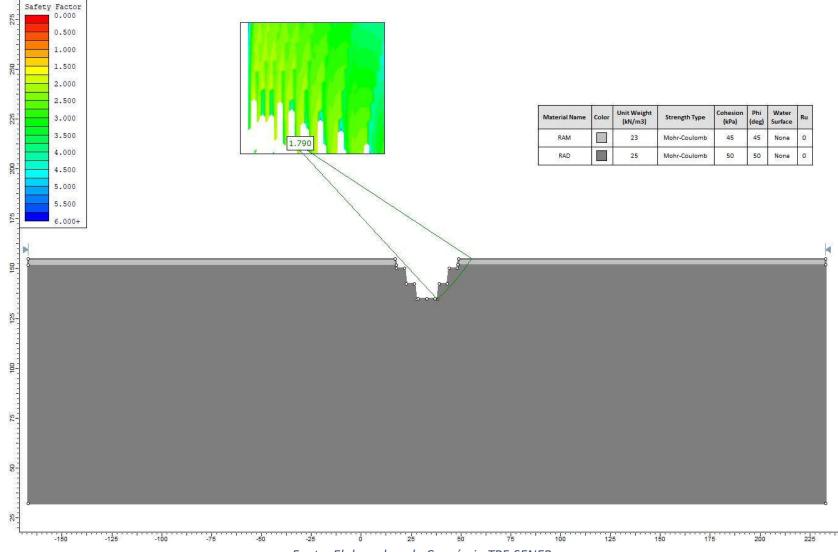


Figura 140 – Análise estabilidade talude de aterro Subtrecho 1.1.1 – FS = 1,790.

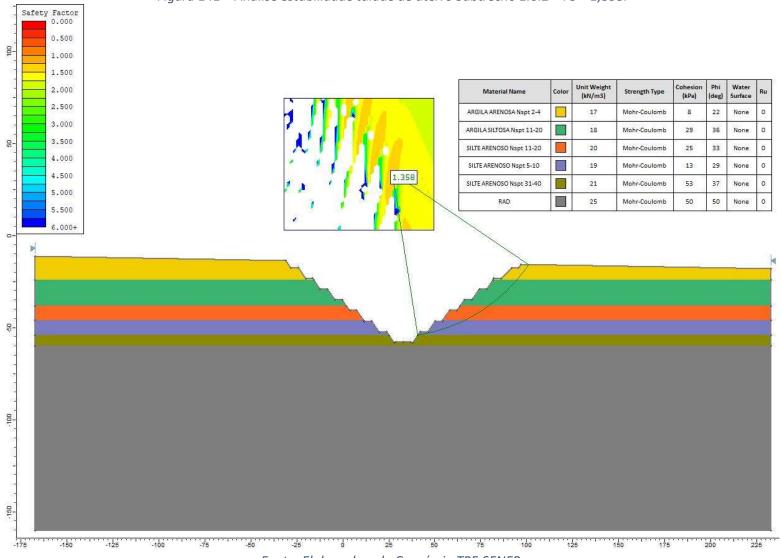
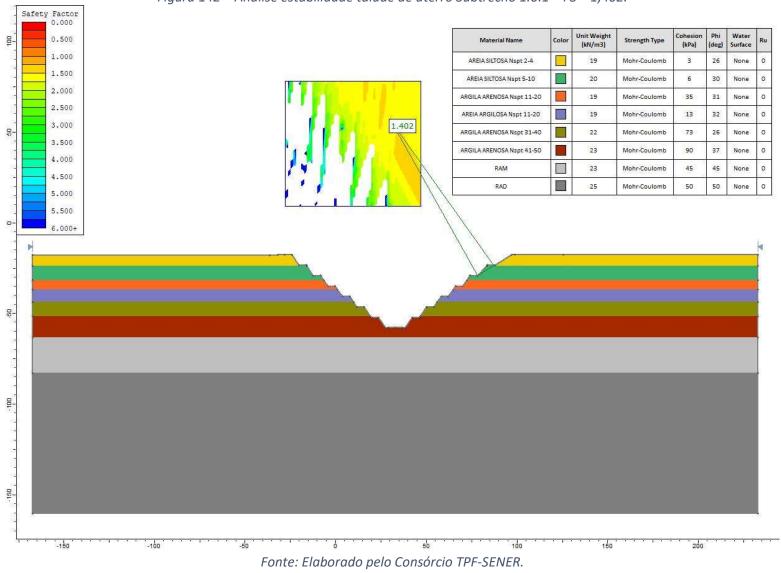


Figura 142 – Análise estabilidade talude de aterro Subtrecho 1.0.1 – FS = 1,402.



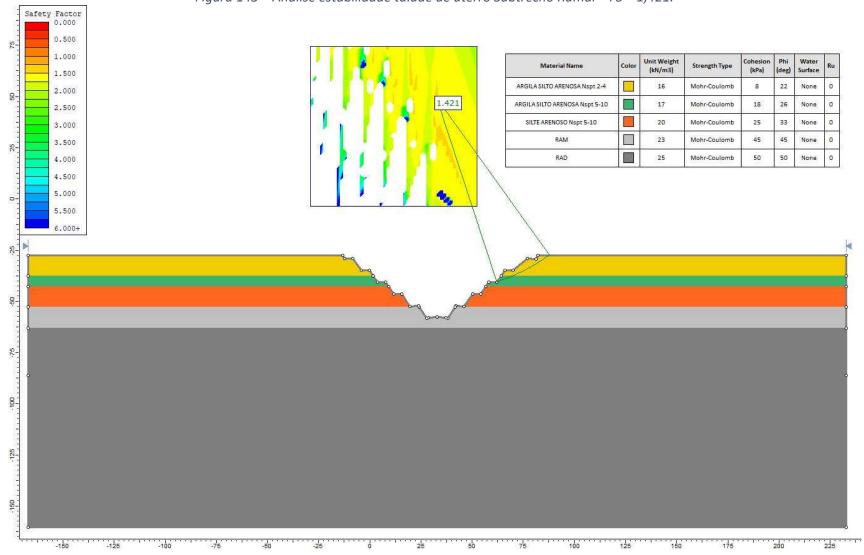


Figura 143 – Análise estabilidade talude de aterro Subtrecho Ramal – FS = 1,421.

Esses resultados obtidos para os taludes de corte foram todos satisfatórios permanecendo acima do limite de FS estipulado (1.3). No caso desses taludes, a altura dele influencia no fator de segurança e recomenda-se ensaios específicos para obtenção dos parâmetros reais para as análises de estabilidade.

12 SUSCETIBILIDADE A PROCESSOS EROSIVOS

A análise de suscetibilidade a processos erosivos foi feita através do estudo da literatura técnica disponível, dos aspectos geológicos – geotécnicos e do meio físico, onde identificou-se as regiões com maiores e menores suscetibilidade a processos erosivos, considerando desde ravinamento a voçorocas, movimentação de massa (escorregamentos) e processos referente a intervenção antrópica que impõe modificações no meio e que podem gerar tais danos.

O mapa elaborado, que se encontra no APÊNDICE R, foi definido pela metodologia de Combinação Linear Ponderada que utiliza os planos de informação em formato matricial (raster). Assim, todos os dados geoespaciais foram transformados para o formato matricial tanto por interpolação como por outros métodos de rasterização. Em função da escala e da área de estudo definidas, utilizou-se para todos os arquivos matriciais células de 30 m e em algumas camadas específicas esse valor pode variar cobrindo todo o estado do Mato Grosso do Sul e do Paraná.

Com o intuito de permitir a compatibilização das variáveis, todos os planos de informação foram normalizados para valores que variam entre 0 e 255 (8bits), baseado numa escala de valores onde a análise conjunta de todas as informações permitiu a hierarquização da suscetibilidade a movimentos de massa e processos erosivos dos terrenos, mapeados em 5 classes: muito alta, alta, média, baixa e muito baixa. Abaixo é apresentada a tabela com a escala e os valores raster considerados.

Tabela 49 – Valores atribuídos para a escala de suscetibilidade a processos erosivos.

ESCALA	SUSCEPTIBILIDADE	NOTA
2	MUITO ALTA	40
4	ALTA	92
6	MÉDIA	145
8	BAIXA	197
10	MUITO BAIXA	249

Fonte: Elaborado pelo Consórcio TPF-SENER.

A seguir são apresentadas as informações consideradas para obtenção do mapa de suscetibilidade a processos erosivos ao longo do traçado.

Tabela 50 – Informações utilizados para elaboração do mapa de suscetibilidade a processos erosivos.

SUBTRECHO	No.	SEGMENTO HOMOGENIO	GEOLOGIA	GEOMORFOLOGIA	PEDOLOGIA	RISCO GEOLÓGICO	NOTA
	1	MARACAJU, MS - DOURADOS, MS	SERRA GERAL: BASALTO	PLANALTO MARACAJU: BAIXA DECLIVIDADE PLANO (ATÉ 3%)	LATOSSOLOS		249
ST 1.0.1 / 1.0.2	2 DOURADOS, MS - GUAIRA, PR SERRA G		SERRA GERAL (MUNDO NOVO ATÉ GUAIRA): BASALTO CINZA	IPLANALTO MARACAJU: BAIXADECLIVIDADE PLANO (ATE 3%)	LATOSSOLOS: DOURADOS - NOVO MUNDO ARGISSOLOS E ORGANOSOLOS: NOVO MUNDO - GUAÍRA		240
31 1.0.17 1.0.2	3	PLANÍCIE FLUVIAL: (GUAÍRA) - DECLIVIDADE SUAVE ONDULADO (3 A 8%) PLANALTO CAMPO MOURAO: (GUAÍRA - MARIPÁ) - DECLIVIDADE SUAVE ONDULADO (3 A 8%) PLANALTO CASCAVEL BAIXO IGUAÇU: (MARIPÁ - IBEMA) - DECLIVIDADE ONDULADO (8 A 20%) PLANALTO CASCAVEL BAIXO IGUAÇU: (MARIPÁ - IBEMA) - DECLIVIDADE ONDULADO (8 A 20%)		SERRA GERAL: BAIXO ÍNDICE EROSIVO CAIUÁ E BOTUCATU: PROCESSOS EROSIVOS - EROSÃO	210		
ST 1.1.1 / 1.2 / 1.3.1	4	IBEMA - GOIOXIM, PR	SERRA GERAL: BASALTO	PLANALTO APUCARANA: DECLIVIDADE SUAVE ONDULADO (3 A 8%) A FORTE ONDULADO (20 A 45%)	NITOSSOLOS (COM PASSSAGENS POR NEOSSOLOS): IBEMA - NOVA LARANJEIRAS NEOSSOLO (PASSAGEM POR LATOSSOLO): NOVA LARANJEIRA - MARQUINHOS CAMBISSOLO: MARQUINHOS - GOIOXIM	LAMINAR (RAVINAS, VOÇOROCAS E MOVIMENTAÇÃO DE MASSA)	150
ST.1.3.2	5	GOIOXIM - GUARAPUAVA,PR	SERRA GERAL: BASALTO	PLANALTO PALMAS: DECLIVIDADE SUAVE ONDULADO (3 A 8%)	LATOSSOLOS: GOIOXIM - GUARAPUAVA		230
ST 1.4.1	6	GUARAPUAVA - PRUDENTÓPOLIS, PR	SERRA GERAL: BASALTO BOTUCATU (PRUDENTÓPOLIS): ARENITO FINO A GROSSO AVERMELHADO	PLANALTO PALMAS SERRA DA BOA ESPERANÇA : DECLIVIDADE SUAVE ONDULADO (3 A 8%) A FORTE ONDULADO (20 A 45%)	CAMBISSOLOS		128
ST 1.4.2	7	PRUDENTÓPOLIS - LAPA (ENG. BLEY), PR	RIO DO RASTRO (PRUDENTÓPOLIS): PELITOS E ARENITO ESVERDEADO; SILTITOS VERDE E AMARELO E ARENITOS ARROXEADOS TERESINA (PRUDENTÓPOLIS ATÉ REBOUÇAS): ARGILITOS, SILTITOS E ARENITOS FINOS A MUITO FINOS SERRA ALTA E IRATI (IRATI ATÉ REBOUÇAS): FOLHELHOS, SILTITOS E ARGILITOS CINZA ESCURO PALERMO (FERNANDO PINHEIRO): SILTITOS, SILTITOS ARENOSOS E ARENITOS FINOS A MUITO FINOS CINZA ESVERDEADO RIO BONITO (FERNANDO PINHEIRO ATÉ S. JOÂO DO TRIUNFO): SILTITOS CINZA A CINZA ESCURO	PLANALTO PONTA GROSSA: DECLIVIDADE SUAVE ONDULADO (3 A	ARGISSOLO, NITOSSOLO E NEOSSOLOS: PRUDENTÓPOLIS - IRATI CAMBISSOLOS: IRATI - LAPA (COM PASSAGENS DE NITOSSOLO E ARGISSOLOS EM FERNANDES PINHEIRO)	PROCESSOS EROSIVOS - EROSÃO LAMINAR (RAVINAS, VOÇOROCAS E MOVIMENTAÇÃO DE MASSA)	82
			RIO DO SUL E CAMPO TENENTE (S. JOAO DO TRIUNO - LAPA): CLASTOS ARENOSOS POUCO ARGILOSOS AVERMELHADO E ARENITOS FINOS A MÉDIOS				128
ST 1.5	8	LAPA(ENG. BLEY) - S. JOSÉ DOS PINHAIS, PR	GUABIROTUBA E COMPLEXO GNÁISSICO (CONTENDA - S. JOSÉ DOS PINHAIS):ARGILITOS	PLANALTO ALTO IGUAÇU: DECLIVIDADE SUAVE ONDULADO (3 A 8%) A ONDULADO (8 A 20%)	Argissolos: Araucária Latossolos: Lapa-araucária-s.j. Pinhais	EROSÃO, RAVINAMENTO E ESCORREGAMENTOS.	191
ST 1.6	9	S. JOSÉ DOS PINHAIS - MORRETES, PR	GUARATUBINHA E MIGMATITO (S. JOSÉ DOS PINHAIS ATÉ MORRETES): SILTITOS ARENITOS E CONGLOMERADOS	PLANALTO CURITIBA: DECLIVIDADE ONDULADO (8 A 20%)	CAMBISSOLOS	INTERFERÊNCIA ANTRÓPICA	128
51 1.0	10	MORRETES - PARANAGUÁ, PR	MIGMATITO E GRANITOS	SERRA DO MAR PARANAENSE: DECLIVIDADE MONTANHOSO (MAIS DE 45%)	NEOSSOLOS (COM PASSAGEM POR ARGISSOLOS)	PROBLEMAS EROSIVOS DEVIDO À INTERFERÊNCIA ANTRÓPICA. SERRA DO MAR: ESCORREGAMENTOS	82
ST 2.1 E 2.2	11	RAMAL CASCAVEL - FOZ DO IGUAÇU, PR	SERRA GERAL: BASALTO	PLANALTO CASCAVEL BAIXO IGUAÇU: DECLIVIDADE ONDULADO (8 A 20%)	LATOSSOLOS E NITOSSOLOS COM PASSAGEM POR NEOSSOLOS	SERRA GERAL: BAIXO ÍNDICE EROSIVO	182

13 ZONEAMENTO GEOTÉCNICO

O zoneamento geotécnico foi elaborado a partir dos dados obtidos nas sondagens e ensaios, onde com a extrapolação dos dados para as regiões onde não foram executadas as sondagens, porém, observadas as mesmas características, foi possível definir as condições geotécnicas ao longo do traçado.

O estudo se baseou numa extensão e 50 km em cada subtrecho, assumindo uma escala entre 2 e 10 para cada condição geotécnica, indo de péssimo (escala 2) para excelente (escala 10). Para cada valor da escala, foi atribuída uma nota crescente de 0 a 100 para cada condição, e um peso para cada item considerado na análise, e com isso, através de uma média ponderada foi obtida uma escala final, e a esta uma nota total a qual classifica a condição final de cada zona.

Os pesos foram definidos em função dos riscos que cada item proporciona ao tipo de obra em questão, sendo avaliadas as dificuldades construtivas quando da ocorrência de tais situações, bem como os requisitos necessários a uma obra em tais condições, aspectos que impactam diretamente as soluções de engenharia tanto no quesito técnico, quanto no quesito econômico. Na sequência é apresentada uma breve descrição de cada item e as respectivas escalas atribuídas.

Tabela 51 – Escala e nota atribuída para cada condição geotécnica definida.

ESCALA	CONDIÇÃO	NOTA
2	PÉSSIMO	0
3	RUIM/PÉSSIMO	13
4	RUIM	25
5	SATISFATÓRIO/RUIM	38
6	SATISFATÓRIO	50
7	BOA/SATISFATÓRIO	63
8	BOA	75
9	EXCELENTE/BOA	88
10	EXCELENTE	100

Fonte: Elaborado pelo Consórcio TPF-SENER.

Os itens considerados na análise são:

1 – Profundidade do nível do lençol freático (PESO 15): obtido nas medidas do nível de água nos furos de sondagem e usado com o objetivo de verificar sua influência na implantação da obra onde será necessário o uso de rebaixamento do lençol freático e drenagem da via, além de ter influência na estabilidade de cortes e solos moles. Abaixo são apresentados os valores da escala considerada, sendo mais próximo da superfície do terreno uma condição desfavorável, e quanto mais profundo, mais favorável.

Tabela 52 – Escala atribuída para o item de nível do lençol freático.

PROFUNDIDADE NA	ESCALA
NA < 10m	3
10 > NA < 30m	6
NA > 30m	9

2 – Espessura de solo mole (PESO 20): também obtido nas sondagens, foi observada a espessura das camadas com essa característica e tomada como condição desfavorável em camadas mais espessas e favorável em pequenas espessuras. Esta avaliação se baseou no estudo de solução de engenharia na qual se definiu a troca de solo para espessuras de até 3 m, e reforço com geossintético para maiores espessuras. A seguir é apresentada a escala considerada para este item.

Tabela 53 – Escala atribuída para o item de espessura de solo mole.

ESPESSURA SOLO MOLE	ESCALA
e = 0m	9
1 > e < 3m	6
3 > e < 5m	4
e > 5m	2

Fonte: Elaborado pelo Consórcio TPF-SENER.

3 – Profundidade do topo rochoso (PESO 20): este item tem como objetivo o uso nas regiões de aterro e fundações. Tem como influência o uso de alguma solução de engenharia para estabilidade de solos em aterros de grandes alturas, onde executado em rocha ou solos residuais mais resistentes devido à proximidade do topo rochoso e, também, no comprimento de estaca e tipologia das fundações das obras de arte, sendo considerado quanto mais próximo da superfície do terreno natural mais favorável e quanto mais profundo, desfavorável. Abaixo apresenta-se a escala considerada para o item.

Tabela 54 – Escala atribuída para o item de profundidade do topo rochoso.

PROFUNDIDADE ROCHA	ESCALA
e < 5m	9
5 > e < 10m	7
e > 10m	5

Fonte: Elaborado pelo Consórcio TPF-SENER.

4 – Categoria material de escavação (PESO 20): baseado nas sondagens e no estudo de estimativa de classificação de material de escavação e mais usado nos cortes que ocorrem do projeto geométrico; foram estimadas porcentagens de material de 1ª, 2ª e 3ª categoria e adotado que quanto maior a porcentagem de material escavado em 1ª categoria, a condição é mais favorável, e quando há porcentagens maiores que 3ª categoria mais desfavorável. Em seguida são apresentadas as porcentagens obtidas no estudo para cada 50 km e a escala adotada de cada trecho.

Tabela 55 – Escala atribuída para a classificação de material de escavação.

SUBTRECHO	KM	CLASSIFIC	ESCALA		
SUBTRECHU	KIVI	1 a	2 a	3a	ESCALA
2.2	0 - 50	75%	20%	5%	7
2.2	50 - 68+715	70%	24%	6%	7
2.1	0 - 50	78%	2%	21%	6
2.1	50 - 96+909	91%	3%	7%	9
1.1.1	0 - 50	53%	40%	7%	6
1.1.1	50 - 59+038	34%	51%	14%	5
1.2	0 - 15+432	20%	35%	46%	3
1.3.1	0 - 50	50%	10%	40%	4
1.5.1	50 - 57+823	78%	16%	6%	7
1.3.2	0 - 50	99%	1%	0%	10
1.5.2	50 - 60+785	90%	10%	0%	9
	0 - 50	36%	48%	16%	5
1.4.1	50 - 100	24%	43%	33%	4
	100 -105+906	33%	50%	17%	5
	0 - 50	15%	61%	24%	4
1.4.2	50 - 100	16%	47%	37%	4
	100 -127+40	41%	35%	24%	5
1.5	0 - 50	68%	23%	9%	6
1.5	50 - 86+450	61%	30%	9%	5
1.6	0 - 50	38%	39%	23%	4
1.6	50 - 85+771	64%	24%	13%	6
	0 - 50	100%	0%	0%	10
102	50 - 100	89%	4%	6%	8
1.0.2	100 -150	90%	5%	6%	9
	150 - 161+498	100%	0%	0%	10
	0 - 50	71%	25%	4%	7
	50 - 100	86%	14%	0%	8
	100 - 150	86%	11%	3%	8
1.0.1	150 - 200	95%	3%	1%	9
1.0.1	200 - 250	100%	0%	0%	10
	250 - 300	90%	10%	0%	9
	300- 350	100%	0%	0%	10
	350 - 377+499	100%	0%	0%	10

5 – Índice de grupo – IG (PESO 15): obtido a partir dos parâmetros granulométricos e de plasticidade através dos ensaios realizados e, também, considerado para a classificação dos grupos de solos adotados neste relatório, esse item foi tomado como o indicador das qualidades físicas dos solos encontrados ao longo do traçado. A seguir é apresentada a escala considerada e os limites numéricos de cada grupo de solos, sendo mais próximo a zero mais favorável (solos arenosos) e quanto mais próximo a 20, desfavorável (solos argilosos).

Tabela 56 – Escala atribuída para o índice de grupo.

IG	ESCALA
0 - 4	9
5 - 12	6
13 - 20	3

6 – Índice de Suporte Califórnia – CBR (PESO 10): também obtido do ensaio previsto e realizado nas sondagens, o item prevê a capacidade de utilização do material natural como subleito, reforço do subleito e material de empréstimo para aterros, esse índice engloba parâmetros mecânicos dos solos e é considerado como índice padrão para implantação de infraestrutura ferroviária e rodoviária. A escala adotada foi definida como favorável para um CBR maior que 10% e desfavorável para um CBR menor que 3%. A seguir é apresentada a escala considerada para este item.

Tabela 57 – Escala atribuída para o CBR.

CBR	ESCALA
CBR < 3%	3
3% > CBR < 10%	6
10% > CBR < 20%	8
CBR > 20%	10

Fonte: Elaborado pelo Consórcio TPF-SENER.

Através dos itens acima, foram obtidas as notas de classificação para o zoneamento geotécnico, o qual é apresentado na tabela a seguir.

No APÊNDICE T pode ser visualizado o mapeamento elaborado para todo o traçado em planta em escala 1:10.000.

Tabela 58 – Zoneamento geotécnico obtido através das notas das escalas dos tens adotados.

SUBTRECHO	км	PROF. NA ESP. SOLO I	ESP. SOLO MOLE	E PROF. ROCHA IG	IG	CAT. MATERIAL	CBR	TOTAL	NOTA
SOBTRECHO		15	20	20	15	20	10	100	NOIA
2.2	0 - 50	6	6	5	3	7	6	5,55	44
	50 - 68+715	9	4	5	6	7	6	6,05	51
2.4	0 - 50	7	2	5	3	6	6	4,70	34
2.1	50 - 96+909	9	2	7	6	9	6	6,45	56
4.4.4	0 - 50	5	9	7	6	6	6	6,65	58
1.1.1	50 - 59+038	3	9	9	6	5	6	6,55	57
1.2	0 - 15+432	7	9	9	6	3	6	6,75	59
1.2.1	0 - 50	8	6	8	6	4	6	6,30	54
1.3.1	50 - 57+823	9	6	6	6	7	6	6,65	58
1.2.2	0 - 50	3	6	5	6	10	6	6,15	52
1.3.2	50 - 60+785	6	6	9	6	9	6	7,20	65
	0 - 50	9	9	9	6	5	6	7,45	68
1.4.1	50 - 100	8	9	9	6	4	6	7,10	64
	100 -105+906	9	9	9	6	5	6	7,45	68
	0 - 50	9	9	9	6	4	6	7,25	66
1.4.2	50 - 100	6	9	9	6	4	6	6,80	60
	100 -127+400	3	9	8	6	5	6	6,35	54
1.5	0 - 50	3	4	5	6	6	6	4,95	37
1.5	50 - 86+450	3	5	6	6	5	6	5,15	39
1.6	0 - 50	5	6	7	6	4	6	5,65	46
1.6	50 - 85+771	3	9	5	6	6	6	5,95	49
	0 - 50	9	2	5	6	10	6	6,25	53
1.0.2	50 - 100	9	2	5	6	8	6	5,85	48
2.0.2	100 -150	6	2	5	3	9	6	5,15	39
	150 - 161+498	6	2	5	3	10	6	5,35	42
	0 - 50	9	6	9	9	7	6	7,70	71
	50 - 100	4	6	8	9	8	6	6,95	62
	100 - 150	5	2	6	9	8	6	5,90	49
1.0.1	150 - 200	6	2	5	9	9	6	6,05	51
1.0.1	200 - 250	6	2	5	9	10	6	6,25	53
	250 - 300	6	2	5	9	9	6	6,05	51
	300-350	3	2	5	9	10	6	5,80	48
	350 - 377+499	6	2	5	9	10	6	6,25	53

14 REFERÊNCIAS

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS. **AASHTO M-145**: **Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes**. 1973.

ANGULO, Rodolfo José. **Geologia da planície costeira do Estado do Paraná**. 1992. Tese de Doutorado. Universidade de São Paulo.

ANTUNES, F.S., CAMPOS, T.M.P., POLIVANOV, H., CALDERANO, S.B., ANDRADE, A.G. **Desenvolvimento** de classes e unidades geo-pedológicas a partir da interação entre a pedologia e a geotecnia. Revista Geotecnia n°. 127. Março, 2013. pp 61-79.

DER – Departamento Nacional de Estradas de Rodagem – **Manual de Pavimentação**, 2ª edição. Rio de Janeiro – RJ – 1996.

DNIT - Departamento Nacional de Infraestrutura de Transportes. **ISF - 207: Estudos Geotécnicos** - **Instrução de Serviços Ferroviários**. — Brasil 2015.

DIAS, J.B., SANTOS, L.J.C. **Aspectos geomorfológicos e o diagnóstico socioambiental do meio rural da região metropolitana de Curitiba (RMC)**. V Simpósio Nacional de Geomorfologia. I Encontro Sul-Americano de Geomorfologia. UFSM - RS, 02 a 07 de agosto de 2004.

EMPRAPA. **Sistema Brasileiro de Classificação de Solos.** 2 ed. Rio de Janeiro. Empresa Brasileiro de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos, 2006.

Theodorovicz, A.M.G. Geodiversidade do estado de Mato Grosso do Sul. São Paulo: CPRM, 2010.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Geomorfologia 1:250.000**. Disponível em: < https://geoftp.ibge.gov.br/informacoes_ambientais/geomorfologia/mapas/escala_250_mil/>. Acesso em: 20 dez. 2020.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Geologia 1:250.000**. Disponível em: https://geoftp.ibge.gov.br/informacoes_ambientais/geologia/levantamento_geologico/mapas/escala_250_mil/. Acesso em: 20 dez. 2020.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Pedologia 1:250.000**. Disponível em: https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/mapas/escala_250_mil/. Acesso em: 20 dez. 2020.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Manual Técnico de Pedologia**. Manual Técnico em Geociências número 4. 3º Edição, 2015.

LACERDA FILHO, J.V., BRITO, R.S.C., SILVA, M.G., OLIVEIRA, C.C., MORETON, L.C., MARTINS, E.G., LOPES, R.C., LIMA, T.M., LARIZZAT, J.H., VALENTE, C.R. **Geologia e recursos minerais do estado de Mato Grosso do Sul**. Goiânia: CPRM, 2004. (Convênio CPRM/SICME).: 121p.

MEZZOMO, M.M. Caracterização geoecológica do trecho superior da bacia hidrográfica do rio Mourão-PR: subsídio ao planejamento da paisagem. Geoingá: Revista do Programa de Pós-Graduação em Geografia. Maringá, v. 5, n. 1, p. 18-38, 2013.

MINEROPAR. Serviço Geológico do Paraná. **Atlas geológico do Estado do Paraná**. Minerais do Paraná, Curitiba, 2001.

MINEROPAR. Serviço Geológico do Paraná. **Avaliação do potencial de argilas para uso em cerâmica vermelha na região dos Campos Gerais: relatório final.** Curitiba. 2009.

MINEROPAR. Serviço Geológico do Paraná. **Avaliação do Potencial para Minerais Industriais na Região Central do Paraná. Relatório final.** Curitiba, 2010.

MINEROPAR. Serviço Geológico do Paraná. **Mapa Geológico do Estado do Paraná**. Escala 1:250.000. 2006.

MINEROPAR. Serviço Geológico do Paraná. **Potencialidades e fragilidades das rochas do estado do Paraná**. 2005.

ORELLANA, E. 1982. Prospeccion geoelectrica en corriente continua. Paraninfo, Madrid, 578 p.

SDP 018-2019 DER-DT EVTEA Ferroviário – Seção 5 – Termos de Referência.

SAMPAIO, T.Q., PIMENTEL, J., SILVA, C.R., Moreira, H.F. A Atuação do Serviço Geológico do Brasil (CPRM) na gestão de riscos e resposta a desastres naturais. VI Congresso de Gestão Pública – CONSAD. Brasília, 2013.

VALEC – Engenharia, Construção e Ferrovia S.A. - **Especificação de Projeto: Estudos Geotecnológicos. Diretrizes para elaboração de estudos geológicos e geotécnicos**. 80-EG-000A-29-0000. Revisão – 08. Brasil, 2019.

VAZ, L. F. Classificação genética dos solos e dos horizontes de alteração de rocha em regiões tropicais. Solos e Rochas, 19 (2): 117-136, ago., 1996.

APÊNDICE A – MAPA GEOLÓGICO

APÊNDICE B – MAPA GEOMORFOLÓGICO

APÊNDICE C – MAPA PEDOLÓGICO

APÊNDICE D – MAPA DOS MUNICÍPIOS COM RECURSOS NATURAIS

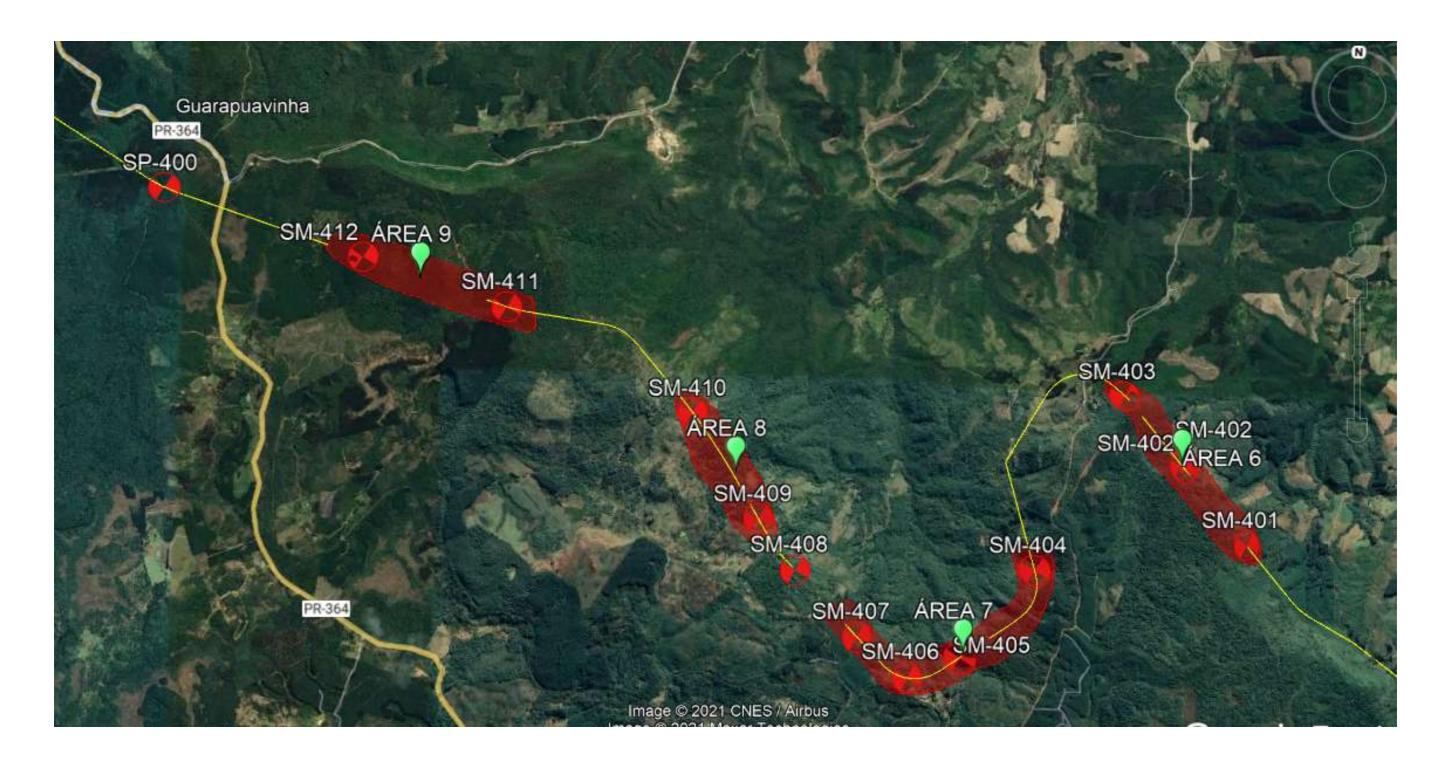
APÊNDICE E – SUBTRECHO 1.0.1 – SONDAGENS SÉRIE 900 - FUSO 21S

APÊNDICE F – SUBTRECHO 1.0.2 – SONDAGENS SÉRIE 900 - FUSO 22S

APÊNDICE G – SUBTRECHO 1.1.1 – SONDAGENS SÉRIE 800 E SUBTRECHO 1.2 – SONDAGENS SÉRIE 700 - FUSO 22S

APÊNDICE H – SUBTRECHO 1.3.1 – SONDAGENS SÉRIE 600 - FUSO 22S

APÊNDICE I – SUBTRECHO 1.3.2 – SONDAGENS SÉRIE 500 - FUSO 22S


APÊNDICE J – SUBTRECHO 1.4.1 – SONDAGENS SÉRIE 400 - FUSO 22S

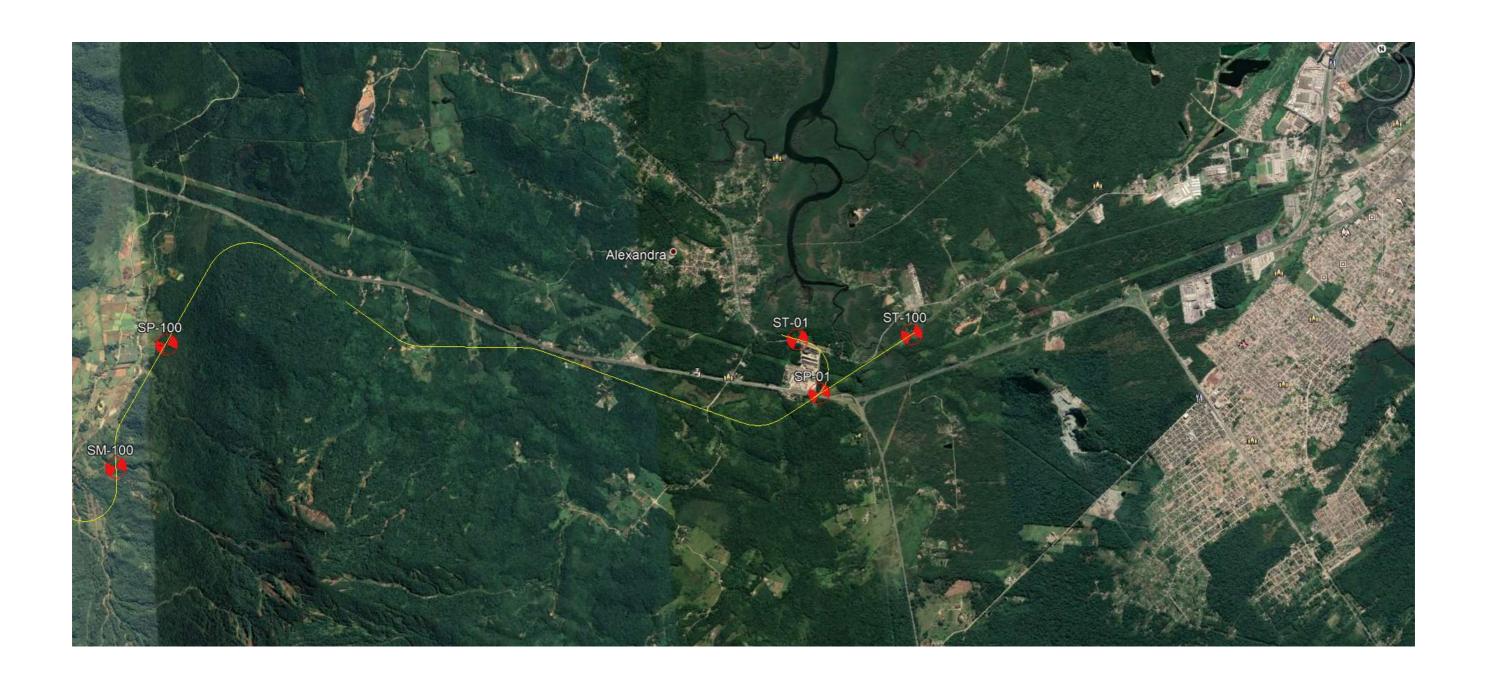
ÁREAS DE GEOFÍSICA

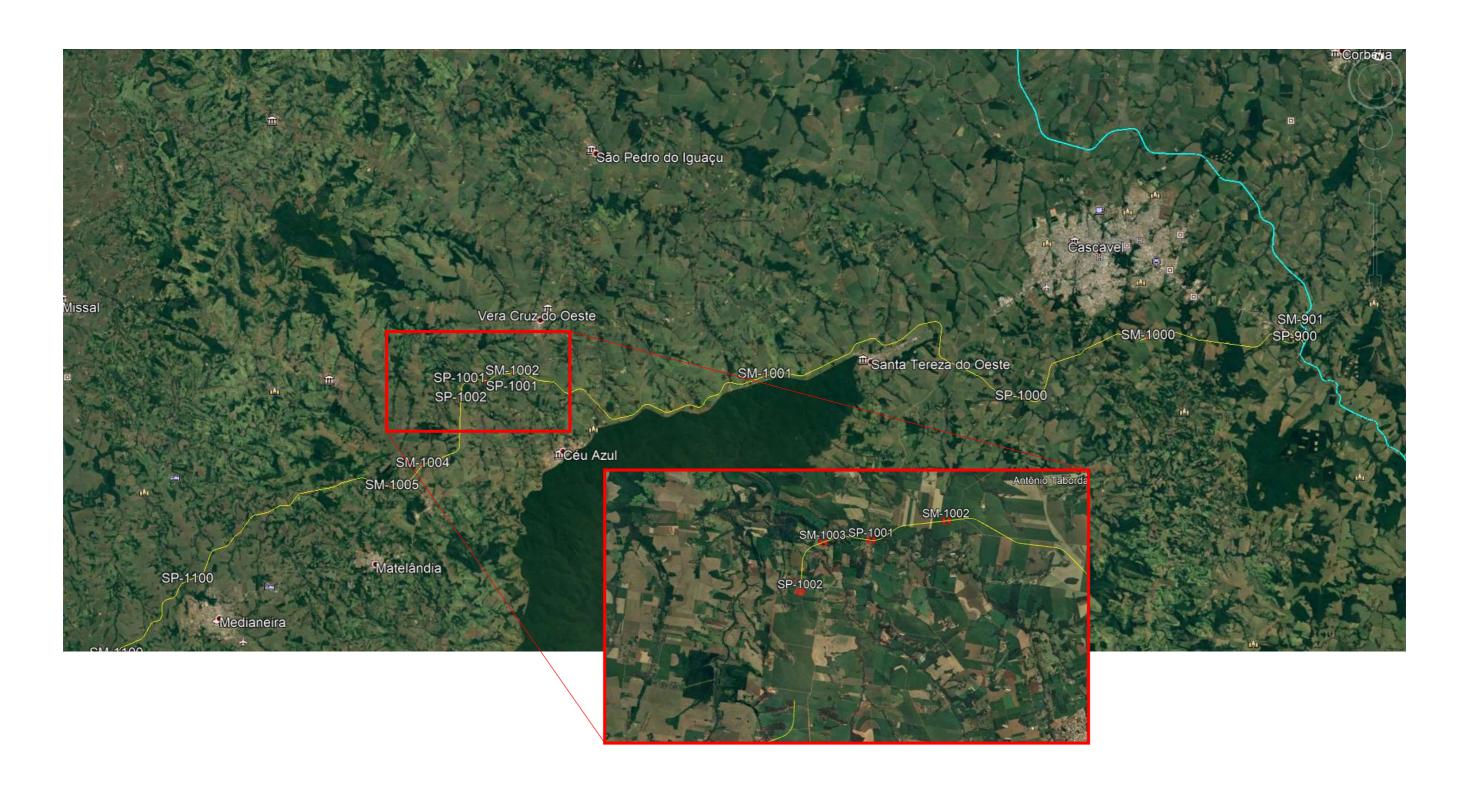
APÊNDICE K – SUBTRECHO 1.4.2 – SONDAGENS SÉRIE 300 - FUSO 22S


APÊNDICE L – SUBTRECHO 1.5 – SONDAGENS SÉRIE 200 - FUSO 22S

APÊNDICE M – SUBTRECHO 1.6 – SONDAGENS SÉRIE 100 - FUSO 22S

ÁREAS DE GEOFÍSICA




APÊNDICE N – SUBTRECHO 1.7 (1,09 KM) – SONDAGENS SÉRIE 00 - FUSO 22S

APÊNDICE O – RAMAL CASCAVEL – FOZ DO IGUAÇU – SONDAGENS SÉRIE 1000 - FUSO 22S

APÊNDICE P – RAMAL CASCAVEL – FOZ DO IGUAÇU – SONDAGENS SÉRIE 1100 - FUSO 21S

APÊNDICE Q – BOLETINS DE SONDAGENS E ENSAIOS

APÊNDICE R – MAPA DE SUSCETIBILIDADE A PROCESSOS EROSIVOS

APÊNDICE S – PERFIL GEOLÓGICO

APÊNDICE T – ZONEAMENTO GEOTÉCNICO